In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network...In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network data and cannot detect currently unknown attacks. Therefore, this paper proposes a network attack detection method combining a flow calculation and deep learning. The method consists of two parts: a real-time detection algorithm based on flow calculations and frequent patterns and a classification algorithm based on the deep belief network and support vector machine(DBN-SVM). Sliding window(SW) stream data processing enables real-time detection, and the DBN-SVM algorithm can improve classification accuracy. Finally, to verify the proposed method, a system is implemented.Based on the CICIDS2017 open source data set, a series of comparative experiments are conducted. The method's real-time detection efficiency is higher than that of traditional machine learning algorithms. The attack classification accuracy is 0.7 percentage points higher than that of a DBN, which is 2 percentage points higher than that of the integrated algorithm boosting and bagging methods. Hence, it is suitable for the real-time detection of high-speed network intrusions.展开更多
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v...An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system.展开更多
This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep belief network(DBN).The important quality variable melt index of polypropylene is hard to measur...This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep belief network(DBN).The important quality variable melt index of polypropylene is hard to measure in industrial processes.Lack of online measurement instruments becomes a problem in polymer quality control.One effective solution is to use soft sensors to estimate the quality variables from process data.In recent years,deep learning has achieved many successful applications in image classification and speech recognition.DBN as one novel technique has strong generalization capability to model complex dynamic processes due to its deep architecture.It can meet the demand of modelling accuracy when applied to actual processes.Compared to the conventional neural networks,the training of DBN contains a supervised training phase and an unsupervised training phase.To mine the valuable information from process data,DBN can be trained by the process data without existing labels in an unsupervised training phase to improve the performance of estimation.Selection of DBN structure is investigated in the paper.The modelling results achieved by DBN and feedforward neural networks are compared in this paper.It is shown that the DBN models give very accurate estimations of the polymer melt index.展开更多
Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division ...Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division and disease characterization by proposing an enhancement calculation.Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification.This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy.To resolve this problem,to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor.The general technique of the created approach includes four stages,such as pre-processing,segmentation,highlight extraction,and the order.From the outset,the Computerized Tomography(CT)image of the lung is taken care of to the division.When the division is done,the highlights are extricated through morphological factors for feature observation.By getting the features are analysed and the characterization is done dependent on the Deep Belief Network(DBN)which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm(CSCA)which distinguish the lung tumour,giving two classes in particular,knob or non-knob.The proposed system produce high performance as well compared to the other system.The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity,precision,affectability,and the explicitness.展开更多
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We...The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.展开更多
基金supported by the National Key Research and Development Program of China(2017YFB1401300,2017YFB1401304)the National Natural Science Foundation of China(61702211,L1724007,61902203)+3 种基金Hubei Provincial Science and Technology Program of China(2017AKA191)the Self-Determined Research Funds of Central China Normal University(CCNU)from the Colleges’Basic Research(CCNU17QD0004,CCNU17GF0002)the Natural Science Foundation of Shandong Province(ZR2017QF015)the Key Research and Development Plan–Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020101)。
文摘In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network data and cannot detect currently unknown attacks. Therefore, this paper proposes a network attack detection method combining a flow calculation and deep learning. The method consists of two parts: a real-time detection algorithm based on flow calculations and frequent patterns and a classification algorithm based on the deep belief network and support vector machine(DBN-SVM). Sliding window(SW) stream data processing enables real-time detection, and the DBN-SVM algorithm can improve classification accuracy. Finally, to verify the proposed method, a system is implemented.Based on the CICIDS2017 open source data set, a series of comparative experiments are conducted. The method's real-time detection efficiency is higher than that of traditional machine learning algorithms. The attack classification accuracy is 0.7 percentage points higher than that of a DBN, which is 2 percentage points higher than that of the integrated algorithm boosting and bagging methods. Hence, it is suitable for the real-time detection of high-speed network intrusions.
基金supported by Inha University Research Grant,Korea
文摘An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system.
基金supported by National Natural Science Foundation of China (No. 61673236)the European Union (No. PIRSES-GA-2013-612230)
文摘This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep belief network(DBN).The important quality variable melt index of polypropylene is hard to measure in industrial processes.Lack of online measurement instruments becomes a problem in polymer quality control.One effective solution is to use soft sensors to estimate the quality variables from process data.In recent years,deep learning has achieved many successful applications in image classification and speech recognition.DBN as one novel technique has strong generalization capability to model complex dynamic processes due to its deep architecture.It can meet the demand of modelling accuracy when applied to actual processes.Compared to the conventional neural networks,the training of DBN contains a supervised training phase and an unsupervised training phase.To mine the valuable information from process data,DBN can be trained by the process data without existing labels in an unsupervised training phase to improve the performance of estimation.Selection of DBN structure is investigated in the paper.The modelling results achieved by DBN and feedforward neural networks are compared in this paper.It is shown that the DBN models give very accurate estimations of the polymer melt index.
文摘Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division and disease characterization by proposing an enhancement calculation.Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification.This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy.To resolve this problem,to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor.The general technique of the created approach includes four stages,such as pre-processing,segmentation,highlight extraction,and the order.From the outset,the Computerized Tomography(CT)image of the lung is taken care of to the division.When the division is done,the highlights are extricated through morphological factors for feature observation.By getting the features are analysed and the characterization is done dependent on the Deep Belief Network(DBN)which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm(CSCA)which distinguish the lung tumour,giving two classes in particular,knob or non-knob.The proposed system produce high performance as well compared to the other system.The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity,precision,affectability,and the explicitness.
文摘The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.