期刊文献+
共找到140,399篇文章
< 1 2 250 >
每页显示 20 50 100
Resource Allocation in V2X Networks:A Double Deep Q-Network Approach with Graph Neural Networks
1
作者 Zhengda Huan Jian Sun +3 位作者 Zeyu Chen Ziyi Zhang Xiao Sun Zenghui Xiao 《Computers, Materials & Continua》 2025年第9期5427-5443,共17页
With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h... With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value. 展开更多
关键词 Resource allocation V2X double deep q-network graph neural network
在线阅读 下载PDF
Deep Reinforcement Learning Approach for X-rudder AUVs Fault Diagnosis Based on Deep Q-network
2
作者 Chuanfa Chen Xiang Gao +3 位作者 Yueming Li Xuezhi Chen Jian Cao Yinghao Zhang 《哈尔滨工程大学学报(英文版)》 2025年第6期1239-1251,共13页
The rudder mechanism of the X-rudder autonomous underwater cehicle(AUV)is relatively complex,and fault diagnosis capability is an important guarantee for its task execution in complex underwater environments.However,t... The rudder mechanism of the X-rudder autonomous underwater cehicle(AUV)is relatively complex,and fault diagnosis capability is an important guarantee for its task execution in complex underwater environments.However,traditional fault diagnosis methods currently rely on prior knowledge and expert experience,and lack accuracy.In order to improve the autonomy and accuracy of fault diagnosis methods,and overcome the shortcomings of traditional algorithms,this paper proposes an X-steering AUV fault diagnosis model based on the deep reinforcement learning deep Q network(DQN)algorithm,which can learn the relationship between state data and fault types,map raw residual data to corresponding fault patterns,and achieve end-to-end mapping.In addition,to solve the problem of few X-steering fault sample data,Dropout technology is introduced during the model training phase to improve the performance of the DQN algorithm.Experimental results show that the proposed model has improved the convergence speed and comprehensive performance indicators compared to the unimproved DQN algorithm,with precision,recall,F_(1-score),and accuracy reaching up to 100%,98.07%,99.02%,and 98.50% respectively,and the model’s accuracy is higher than other machine learning algorithms like back propagation,support vector machine. 展开更多
关键词 Autonomous underwater cehicles X-rudder Fault diagnosis deep Q network Dropout technique
在线阅读 下载PDF
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
3
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(CNN) cloud RAN deep q-network(DQN)
在线阅读 下载PDF
Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments 被引量:2
4
作者 LI Shuyi LI Minzhe JING Zhongliang 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第4期601-612,共12页
The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factor... The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factors contribute to a tendency for the solution to converge slowly,and in some cases,diverge altogether.In addressing this issue,this paper introduces a novel approach utilizing a double dueling deep Q-network(D3QN),tailored for dynamic multi-agent environments.A novel reward function based on multi-agent positional constraints is designed,and a training strategy based on incremental learning is performed to achieve collaborative path planning of multiple agents.Moreover,the greedy and Boltzmann probability selection policy is introduced for action selection and avoiding convergence to local extremum.To match radar and image sensors,a convolutional neural network-long short-term memory(CNN-LSTM)architecture is constructed to extract the feature of multi-source measurement as the input of the D3QN.The algorithm’s efficacy and reliability are validated in a simulated environment,utilizing robot operating system and Gazebo.The simulation results show that the proposed algorithm provides a real-time solution for path planning tasks in dynamic scenarios.In terms of the average success rate and accuracy,the proposed method is superior to other deep learning algorithms,and the convergence speed is also improved. 展开更多
关键词 MULTI-AGENT path planning deep reinforcement learning deep q-network
原文传递
Manufacturing Resource Scheduling Based on Deep Q-Network 被引量:1
5
作者 ZHANG Yufei Zou Yuanhao ZHAO Xiaodong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2022年第6期531-538,共8页
To optimize machine allocation and task dispatching in smart manufacturing factories, this paper proposes a manufacturing resource scheduling framework based on reinforcement learning(RL). The framework formulates the... To optimize machine allocation and task dispatching in smart manufacturing factories, this paper proposes a manufacturing resource scheduling framework based on reinforcement learning(RL). The framework formulates the entire scheduling process as a multi-stage sequential decision problem, and further obtains the scheduling order by the combination of deep convolutional neural network(CNN) and improved deep Q-network(DQN). Specifically, with respect to the representation of the Markov decision process(MDP), the feature matrix is considered as the state space and a set of heuristic dispatching rules are denoted as the action space. In addition, the deep CNN is employed to approximate the state-action values, and the double dueling deep Qnetwork with prioritized experience replay and noisy network(D3QPN2) is adopted to determine the appropriate action according to the current state. In the experiments, compared with the traditional heuristic method, the proposed method is able to learn high-quality scheduling policy and achieve shorter makespan on the standard public datasets. 展开更多
关键词 smart manufacturing job shop scheduling convolutional neural network deep q-network
原文传递
Multi-Agent Deep Q-Networks for Efficient Edge Federated Learning Communications in Software-Defined IoT
6
作者 Prohim Tam Sa Math +1 位作者 Ahyoung Lee Seokhoon Kim 《Computers, Materials & Continua》 SCIE EI 2022年第5期3319-3335,共17页
Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging ... Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes.However,in large-scale heterogeneous Internet of Things(IoT)cellular networks,massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly.This paper introduces the system model of converging softwaredefined networking(SDN)and network functions virtualization(NFV)to enable device/resource abstractions and provide NFV-enabled edge FL(eFL)aggregation servers for advancing automation and controllability.Multi-agent deep Q-networks(MADQNs)target to enforce a self-learning softwarization,optimize resource allocation policies,and advocate computation offloading decisions.With gathered network conditions and resource states,the proposed agent aims to explore various actions for estimating expected longterm rewards in a particular state observation.In exploration phase,optimal actions for joint resource allocation and offloading decisions in different possible states are obtained by maximum Q-value selections.Action-based virtual network functions(VNF)forwarding graph(VNFFG)is orchestrated to map VNFs towards eFL aggregation server with sufficient communication and computation resources in NFV infrastructure(NFVI).The proposed scheme indicates deficient allocation actions,modifies the VNF backup instances,and reallocates the virtual resource for exploitation phase.Deep neural network(DNN)is used as a value function approximator,and epsilongreedy algorithm balances exploration and exploitation.The scheme primarily considers the criticalities of FL model services and congestion states to optimize long-term policy.Simulation results presented the outperformance of the proposed scheme over reference schemes in terms of Quality of Service(QoS)performance metrics,including packet drop ratio,packet drop counts,packet delivery ratio,delay,and throughput. 展开更多
关键词 deep q-networks federated learning network functions virtualization quality of service software-defined networking
在线阅读 下载PDF
Reinforcement Learning with an Ensemble of Binary Action Deep Q-Networks
7
作者 A.M.Hafiz M.Hassaballah +2 位作者 Abdullah Alqahtani Shtwai Alsubai Mohamed Abdel Hameed 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2651-2666,共16页
With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in ... With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in the literature.One such notable technique,Multiple Deep Q-Network(DQN)based RL systems use multiple DQN-based-entities,which learn together and communicate with each other.The learning has to be distributed wisely among all entities in such a scheme and the inter-entity communication protocol has to be carefully designed.As more complex DQNs come to the fore,the overall complexity of these multi-entity systems has increased many folds leading to issues like difficulty in training,need for high resources,more training time,and difficulty in fine-tuning leading to performance issues.Taking a cue from the parallel processing found in the nature and its efficacy,we propose a lightweight ensemble based approach for solving the core RL tasks.It uses multiple binary action DQNs having shared state and reward.The benefits of the proposed approach are overall simplicity,faster convergence and better performance compared to conventional DQN based approaches.The approach can potentially be extended to any type of DQN by forming its ensemble.Conducting extensive experimentation,promising results are obtained using the proposed ensemble approach on OpenAI Gym tasks,and Atari 2600 games as compared to recent techniques.The proposed approach gives a stateof-the-art score of 500 on the Cartpole-v1 task,259.2 on the LunarLander-v2 task,and state-of-the-art results on four out of five Atari 2600 games. 展开更多
关键词 deep q-networks ensemble learning reinforcement learning OpenAI Gym environments
在线阅读 下载PDF
UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network
8
作者 LI Yuting DING Yi +3 位作者 GAO Jiangchuan LIU Yusha HU Jie YANG Kun 《ZTE Communications》 2023年第2期80-87,共8页
In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly ... In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design. 展开更多
关键词 unmanned aerial vehicle wireless power transfer deep q-network autonomous navigation
在线阅读 下载PDF
Walking Stability Control Method for Biped Robot on Uneven Ground Based on Deep Q-Network
9
作者 Baoling Han Yuting Zhao Qingsheng Luo 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期598-605,共8页
A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture ... A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved. 展开更多
关键词 deep q-network (DQN) BIPED robot uneven ground WALKING STABILITY gait control
在线阅读 下载PDF
Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface 被引量:1
10
作者 REN Min XU Renyu ZHU Ting 《ZTE Communications》 2023年第3期3-10,共8页
Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through elec... Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics. 展开更多
关键词 brain-computer interface(BCI) electroencephalogram(EEG) deep reinforcement learning(deep RL) motion imaging(MI)generalizability
在线阅读 下载PDF
MAQMC:Multi-Agent Deep Q-Network for Multi-Zone Residential HVAC Control
11
作者 Zhengkai Ding Qiming Fu +4 位作者 Jianping Chen You Lu Hongjie Wu Nengwei Fang Bin Xing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2759-2785,共27页
The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep r... The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep reinforcement learning(DRL)methods have recently been proposed to address the HVAC control problem.However,the application of single-agent DRL formulti-zone residential HVAC controlmay lead to non-convergence or slow convergence.In this paper,we propose MAQMC(Multi-Agent deep Q-network for multi-zone residential HVAC Control)to address this challenge with the goal of minimizing energy consumption while maintaining occupants’thermal comfort.MAQMC is divided into MAQMC2(MAQMC with two agents:one agent controls the temperature of each zone,and the other agent controls the humidity of each zone)and MAQMC3(MAQMC with three agents:three agents control the temperature and humidity of three zones,respectively).The experimental results showthatMAQMC3 can reduce energy consumption by 6.27%andMAQMC2 by 3.73%compared with the fixed point;compared with the rule-based,MAQMC3 andMAQMC2 respectively can reduce 61.89%and 59.07%comfort violation.In addition,experiments with different regional weather data demonstrate that the well-trained MAQMC RL agents have the robustness and adaptability to unknown environments. 展开更多
关键词 deep reinforcement learning multi-zone residential HVAC MULTI-AGENT energy conservation COMFORT
在线阅读 下载PDF
Intelligent and efficient fiber allocation strategy based on the dueling-double-deep Q-network
12
作者 Yong ZHANG Zhipeng YUAN +2 位作者 Jia DING Feng GUO Junyang JIN 《Frontiers of Engineering Management》 2025年第4期721-735,共15页
Fiber allocation in optical cable production is critical for optimizing production efficiency,product quality,and inventory management.However,factors like fiber length and storage time complicate this process,making ... Fiber allocation in optical cable production is critical for optimizing production efficiency,product quality,and inventory management.However,factors like fiber length and storage time complicate this process,making heuristic optimization algorithms inadequate.To tackle these challenges,this paper proposes a new framework:the dueling-double-deep Q-network with twin state-value and action-advantage functions (D3QNTF).First,dual action-advantage and state-value functions are used to prevent overestimation of action values.Second,a method for random initialization of feasible solutions improves sample quality early in the optimization.Finally,a strict penalty for errors is added to the reward mechanism,making the agent more sensitive to and better at avoiding illegal actions,which reduces decision errors.Experimental results show that the proposed method outperforms state-of-the-art algorithms,including greedy algorithms,genetic algorithms,deep Q-networks,double deep Q-networks,and standard dueling-double-deep Q-networks.The findings highlight the potential of the D3QNTF framework for fiber allocation in optical cable production. 展开更多
关键词 optical fiber allocation deep reinforcement learning dueling-double-deep q-network dual action-advantage and state-value functions feasible solutions
原文传递
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
13
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep q-network
在线阅读 下载PDF
Two-stage deep Q-network reinforcement learning based ultra-efficient fault diagnosis and severity assessment scheme for photovoltaic protection
14
作者 Sherko Salehpour Aref Eskandari +1 位作者 Amir Nedaei Mohammadreza Aghaei 《Energy and AI》 2025年第2期537-551,共15页
Early detection of faults in photovoltaic(PV)arrays has always been the center of attention to maintain system efficiency and reliability.However,conventional protection devices have shown various deficiencies,especia... Early detection of faults in photovoltaic(PV)arrays has always been the center of attention to maintain system efficiency and reliability.However,conventional protection devices have shown various deficiencies,especially when dealing with less severe faults.Hence,artificial intelligence(AI)models,specifically machine learning(ML)have complemented the conventional protection devices to compensate for their limitations.Despite their obvious advantages,ML models have also shown several shortcomings,such as(i)most of them relied on a massive amount of training dataset to provide a fairly satisfying accuracy,(ii)not many of them were able to detect less severe faults,and(iii)those which were able to detect less severe faults could not produce high accuracy.To this end,the present paper proposes a state-of-the-art deep reinforcement learning(DRL)model based on deep Q-network(DQN)to overcome all the existing challenges in previous ML models for PV arrays fault detection and diagnosis.The model carries out a two-stage process employing two DQN-based agents which is not only able to accurately detect and classify(first stage)various faults in PV arrays,but it is also able to assess the severity of line-to-line(LL)and line-to-ground(LG)faults(second stage)in PV arrays using only a small training dataset.The training and testing datasets include several voltage and current values on PV array current-voltage(I-V)characteristic curve which is extracted using the variable load technique for PV array I-V curve extraction.The model has been implemented on an experimental standalone PV array and the results show outstanding accuracies of 98.61%and 100%when it is verified by testing datasets in the first and the second stage,respectively. 展开更多
关键词 Photovoltaics Fault detection and diagnosis Machine learning deep learning deep reinforcement learning deepq-network
在线阅读 下载PDF
Determining the Energy Potential of Deep Borehole Heat Exchangers in Croatia and Economic Analysis of Oil&Gas Well Revitalization
15
作者 Marija Macenic Tomislav Kurevija Tin Herbst 《Energy Engineering》 2026年第1期1-26,共26页
The increased interest in geothermal energy is evident,along with the exploitation of traditional hydrothermal systems,in the growing research and projects developing around the reuse of already-drilled oil,gas,and ex... The increased interest in geothermal energy is evident,along with the exploitation of traditional hydrothermal systems,in the growing research and projects developing around the reuse of already-drilled oil,gas,and exploration wells.The Republic of Croatia has around 4000 wells,however,due to a long period since most of these wells were drilled and completed,there is uncertainty about how many are available for retrofitting as deep-borehole heat exchangers.Nevertheless,as hydrocarbon production decreases,it is expected that the number of wells available for the revitalization and exploitation of geothermal energy will increase.The revitalization of wells via deep-borehole heat exchangers involves installing a coaxial heat exchanger and circulating the working fluid in a closed system,during which heat is transferred from the surrounding rock medium to the circulating fluid.Since drilled wells are not of uniformdepth and are located in areas with different thermal rock properties and geothermal gradients,an analysis was conducted to determine available thermal energy as a function of well depth,geothermal gradient,and circulating fluid flow rate.Additionally,an economic analysis was performed to determine the benefits of retrofitting existing assets,such as drilled wells,compared to drilling new wells to obtain the same amount of thermal energy. 展开更多
关键词 Geothermal energy deep coaxial borehole heat exchangers deep BHE heat extraction abandoned wells retrofitted wells
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
16
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Nondestructive detection of key phenotypes for the canopy of the watermelon plug seedlings based on deep learning
17
作者 Lei Li Zhilong Bie +4 位作者 Yi Zhang Yuan Huang Chengli Peng Binbin Han Shengyong Xu 《Horticultural Plant Journal》 2026年第1期149-160,共12页
Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phe... Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phenotypes mainly relies on manual measurement which is inefficient,subjective and destroys samples.Therefore,the paper proposes a nondestructive measurement method for the canopy phenotype of the watermelon plug seedlings based on deep learning.The Azure Kinect was used to shoot canopy color images,depth images,and RGB-D images of the watermelon plug seedlings.The Mask-RCNN network was used to classify,segment,and count the canopy leaves of the watermelon plug seedlings.To reduce the error of leaf area measurement caused by mutual occlusion of leaves,the leaves were repaired by CycleGAN,and the depth images were restored by image processing.Then,the Delaunay triangulation was adopted to measure the leaf area in the leaf point cloud.The YOLOX target detection network was used to identify the growing point position of each seedling on the plug tray.Then the depth differences between the growing point and the upper surface of the plug tray were calculated to obtain plant height.The experiment results show that the nondestructive measurement algorithm proposed in this paper achieves good measurement performance for the watermelon plug seedlings from the 1 true-leaf to 3 true-leaf stages.The average relative error of measurement is 2.33%for the number of true leaves,4.59%for the number of cotyledons,8.37%for the leaf area,and 3.27%for the plant height.The experiment results demonstrate that the proposed algorithm in this paper provides an effective solution for the nondestructive measurement of the canopy phenotype of the plug seedlings. 展开更多
关键词 Watermelon seedlings Azure Kinect CANOPY Phenotype detection deep learning
在线阅读 下载PDF
基于Deep Seek的轻量化教育教学工具开发与实践
18
作者 李辉波 《中国信息技术教育》 2026年第1期92-94,共3页
本研究立足基础教育真实场景中的典型问题,深度整合Deep Seek大模型的生成式人工智能技术优势,构建了“问题导向—技术赋能—轻量开发”的教学工具创新框架,并提出“微研发”模式有效弥合了教育技术供给与教学实践需求之间的“最后一公... 本研究立足基础教育真实场景中的典型问题,深度整合Deep Seek大模型的生成式人工智能技术优势,构建了“问题导向—技术赋能—轻量开发”的教学工具创新框架,并提出“微研发”模式有效弥合了教育技术供给与教学实践需求之间的“最后一公里”鸿沟。 展开更多
关键词 deep Seek 人工智能 轻量化 教育教学工具开发
在线阅读 下载PDF
A Deep Reinforcement Learning-Based Partitioning Method for Power System Parallel Restoration
19
作者 Changcheng Li Weimeng Chang +1 位作者 Dahai Zhang Jinghan He 《Energy Engineering》 2026年第1期243-264,共22页
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision... Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training. 展开更多
关键词 Partitioning method parallel restoration deep reinforcement learning experience replay buffer partitioning modularity
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
20
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部