期刊文献+
共找到21,444篇文章
< 1 2 250 >
每页显示 20 50 100
A deep Q-learning network based active object detection model with a novel training algorithm for service robots 被引量:5
1
作者 Shaopeng LIU Guohui TIAN +1 位作者 Yongcheng CUI Xuyang SHAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第11期1673-1683,共11页
This paper focuses on the problem of active object detection(AOD).AOD is important for service robots to complete tasks in the family environment,and leads robots to approach the target ob ject by taking appropriate m... This paper focuses on the problem of active object detection(AOD).AOD is important for service robots to complete tasks in the family environment,and leads robots to approach the target ob ject by taking appropriate moving actions.Most of the current AOD methods are based on reinforcement learning with low training efficiency and testing accuracy.Therefore,an AOD model based on a deep Q-learning network(DQN)with a novel training algorithm is proposed in this paper.The DQN model is designed to fit the Q-values of various actions,and includes state space,feature extraction,and a multilayer perceptron.In contrast to existing research,a novel training algorithm based on memory is designed for the proposed DQN model to improve training efficiency and testing accuracy.In addition,a method of generating the end state is presented to judge when to stop the AOD task during the training process.Sufficient comparison experiments and ablation studies are performed based on an AOD dataset,proving that the presented method has better performance than the comparable methods and that the proposed training algorithm is more effective than the raw training algorithm. 展开更多
关键词 Active object detection deep q-learning network Training method Service robots
原文传递
Intelligent Fast Cell Association Scheme Based on Deep Q-Learning in Ultra-Dense Cellular Networks 被引量:1
2
作者 Jinhua Pan Lusheng Wang +2 位作者 Hai Lin Zhiheng Zha Caihong Kai 《China Communications》 SCIE CSCD 2021年第2期259-270,共12页
To support dramatically increased traffic loads,communication networks become ultra-dense.Traditional cell association(CA)schemes are timeconsuming,forcing researchers to seek fast schemes.This paper proposes a deep Q... To support dramatically increased traffic loads,communication networks become ultra-dense.Traditional cell association(CA)schemes are timeconsuming,forcing researchers to seek fast schemes.This paper proposes a deep Q-learning based scheme,whose main idea is to train a deep neural network(DNN)to calculate the Q values of all the state-action pairs and the cell holding the maximum Q value is associated.In the training stage,the intelligent agent continuously generates samples through the trial-anderror method to train the DNN until convergence.In the application stage,state vectors of all the users are inputted to the trained DNN to quickly obtain a satisfied CA result of a scenario with the same BS locations and user distribution.Simulations demonstrate that the proposed scheme provides satisfied CA results in a computational time several orders of magnitudes shorter than traditional schemes.Meanwhile,performance metrics,such as capacity and fairness,can be guaranteed. 展开更多
关键词 ultra-dense cellular networks(UDCN) cell association(CA) deep q-learning proportional fairness q-learning
在线阅读 下载PDF
Deep Q-Learning Based Optimal Query Routing Approach for Unstructured P2P Network 被引量:1
3
作者 Mohammad Shoab Abdullah Shawan Alotaibi 《Computers, Materials & Continua》 SCIE EI 2022年第3期5765-5781,共17页
Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environmen... Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environment to select its efforts in the future efficiently.DRL has been used in many application fields,including games,robots,networks,etc.for creating autonomous systems that improve themselves with experience.It is well acknowledged that DRL is well suited to solve optimization problems in distributed systems in general and network routing especially.Therefore,a novel query routing approach called Deep Reinforcement Learning based Route Selection(DRLRS)is proposed for unstructured P2P networks based on a Deep Q-Learning algorithm.The main objective of this approach is to achieve better retrieval effectiveness with reduced searching cost by less number of connected peers,exchangedmessages,and reduced time.The simulation results shows a significantly improve searching a resource with compression to k-Random Walker and Directed BFS.Here,retrieval effectiveness,search cost in terms of connected peers,and average overhead are 1.28,106,149,respectively. 展开更多
关键词 Reinforcement learning deep q-learning unstructured p2p network query routing
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
4
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
5
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Path Planning for Intelligent Robots Based on Deep Q-learning With Experience Replay and Heuristic Knowledge 被引量:28
6
作者 Lan Jiang Hongyun Huang Zuohua Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期1179-1189,共11页
Path planning and obstacle avoidance are two challenging problems in the study of intelligent robots. In this paper, we develop a new method to alleviate these problems based on deep Q-learning with experience replay ... Path planning and obstacle avoidance are two challenging problems in the study of intelligent robots. In this paper, we develop a new method to alleviate these problems based on deep Q-learning with experience replay and heuristic knowledge. In this method, a neural network has been used to resolve the "curse of dimensionality" issue of the Q-table in reinforcement learning. When a robot is walking in an unknown environment, it collects experience data which is used for training a neural network;such a process is called experience replay.Heuristic knowledge helps the robot avoid blind exploration and provides more effective data for training the neural network. The simulation results show that in comparison with the existing methods, our method can converge to an optimal action strategy with less time and can explore a path in an unknown environment with fewer steps and larger average reward. 展开更多
关键词 deep q-learning(DQL) experience replay(ER) heuristic knowledge(HK) path planning
在线阅读 下载PDF
Integration of deep neural network modeling and LC-MS-based pseudo-targeted metabolomics to discriminate easily confused ginseng species 被引量:2
7
作者 Meiting Jiang Yuyang Sha +8 位作者 Yadan Zou Xiaoyan Xu Mengxiang Ding Xu Lian Hongda Wang Qilong Wang Kefeng Li De-an Guo Wenzhi Yang 《Journal of Pharmaceutical Analysis》 2025年第1期126-137,共12页
Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments invo... Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments involved in metabolomics workflows.Various chemometric approaches utilizing either pattern recognition or machine learning have been employed to separate different groups.However,insufficient feature extraction,inappropriate feature selection,overfitting,or underfitting lead to an insufficient capacity to discriminate plants that are often easily confused.Using two ginseng varieties,namely Panax japonicus(PJ)and Panax japonicus var.major(PJvm),containing the similar ginsenosides,we integrated pseudo-targeted metabolomics and deep neural network(DNN)modeling to achieve accurate species differentiation.A pseudo-targeted metabolomics approach was optimized through data acquisition mode,ion pairs generation,comparison between multiple reaction monitoring(MRM)and scheduled MRM(sMRM),and chromatographic elution gradient.In total,1980 ion pairs were monitored within 23 min,allowing for the most comprehensive ginseng metabolome analysis.The established DNN model demonstrated excellent classification performance(in terms of accuracy,precision,recall,F1 score,area under the curve,and receiver operating characteristic(ROC))using the entire metabolome data and feature-selection dataset,exhibiting superior advantages over random forest(RF),support vector machine(SVM),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP).Moreover,DNNs were advantageous for automated feature learning,nonlinear modeling,adaptability,and generalization.This study confirmed practicality of the established strategy for efficient metabolomics data analysis and reliable classification performance even when using small-volume samples.This established approach holds promise for plant metabolomics and is not limited to ginseng. 展开更多
关键词 Liquid chromatography-mass spectrometry Pseudo-targeted metabolomics deep neural network Species differentiation GINSENG
在线阅读 下载PDF
基于Q-learning算法的机场航班延误预测 被引量:2
8
作者 刘琪 乐美龙 《航空计算技术》 2025年第1期28-32,共5页
将改进的深度信念网络(DBN)和Q-learning算法结合建立组合预测模型。首先将延误预测问题建模为一个标准的马尔可夫决策过程,使用改进的深度信念网络来选择关键特征。经深度信念网络分析,从46个特征变量中选择出27个关键特征类别作为延... 将改进的深度信念网络(DBN)和Q-learning算法结合建立组合预测模型。首先将延误预测问题建模为一个标准的马尔可夫决策过程,使用改进的深度信念网络来选择关键特征。经深度信念网络分析,从46个特征变量中选择出27个关键特征类别作为延误时间的最终解释变量输入Q-learning算法中,从而实现对航班延误的实时预测。使用北京首都国际机场航班数据进行测试实验,实验结果表明,所提出的模型可以有效预测航班延误,平均误差为4.05 min。将提出的组合算法性能与4种基准方法进行比较,基于DBN的Q-learning算法的延误预测准确性高于另外四种算法,具有较高的预测精度。 展开更多
关键词 航空运输 航班延误预测 深度信念网络 q-learning 航班延误
在线阅读 下载PDF
Adaptive 3D Routing Protocol for Flying Ad Hoc Networks Based on Prediction-Driven Q-Learning 被引量:3
9
作者 Min Zhang Chao Dong +3 位作者 Simeng Feng Xin Guan Huichao Chen Qihui Wu 《China Communications》 SCIE CSCD 2022年第5期302-317,共16页
The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly f... The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios. 展开更多
关键词 ROUTING unmanned aerial vehicles(UAVs) flying ad hoc networks(FANETs) PREDICTION q-learning
在线阅读 下载PDF
A Genetic Based Fuzzy Q-Learning Flow Controller for High-Speed Networks 被引量:2
10
作者 Xin LI Yuanwei JING +1 位作者 Nan JIANG Siying ZHANG 《International Journal of Communications, Network and System Sciences》 2009年第1期84-89,共6页
For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete ... For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for high-speed networks. In this case, the Q-learning, which is independent of mathematic model, and prior-knowledge, has good performance. The fuzzy inference is introduced in order to facilitate generalization in large state space, and the genetic operators are used to obtain the consequent parts of fuzzy rules. Simulation results show that the proposed controller can learn to take the best action to regulate source flow with the features of high throughput and low packet loss ratio, and can avoid the occurrence of congestion effectively. 展开更多
关键词 HIGH-SPEED network Flow Control FUZZY q-learning GENETIC OPERATOR
暂未订购
Lightweight deep network and projection loss for eye semantic segmentation
11
作者 Qinjie Wang Tengfei Wang +1 位作者 Lizhuang Yang Hai Li 《中国科学技术大学学报》 北大核心 2025年第7期59-68,58,I0002,共12页
Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is cr... Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is crucial for computationally limited portable devices such as augmented reality and virtual reality.With the rapid advancements in deep learning,many network models have been developed specifically for eye image segmentation.Some methods divide the segmentation process into multiple stages to achieve model parameter miniaturization while enhancing output through post processing techniques to improve segmentation accuracy.These approaches significantly increase the inference time.Other networks adopt more complex encoding and decoding modules to achieve end-to-end output,which requires substantial computation.Therefore,balancing the model’s size,accuracy,and computational complexity is essential.To address these challenges,we propose a lightweight asymmetric UNet architecture and a projection loss function.We utilize ResNet-3 layer blocks to enhance feature extraction efficiency in the encoding stage.In the decoding stage,we employ regular convolutions and skip connections to upscale the feature maps from the latent space to the original image size,balancing the model size and segmentation accuracy.In addition,we leverage the geometric features of the eye region and design a projection loss function to further improve the segmentation accuracy without adding any additional inference computational cost.We validate our approach on the OpenEDS2019 dataset for virtual reality and achieve state-of-the-art performance with 95.33%mean intersection over union(mIoU).Our model has only 0.63M parameters and 350 FPS,which are 68%and 200%of the state-of-the-art model RITNet,respectively. 展开更多
关键词 lightweight deep network projection loss real-time semantic segmentation convolutional neural networks END-TO-END
在线阅读 下载PDF
Exploring Deep Reinforcement Learning with Multi Q-Learning 被引量:27
12
作者 Ethan Duryea Michael Ganger Wei Hu 《Intelligent Control and Automation》 2016年第4期129-144,共16页
Q-learning is a popular temporal-difference reinforcement learning algorithm which often explicitly stores state values using lookup tables. This implementation has been proven to converge to the optimal solution, but... Q-learning is a popular temporal-difference reinforcement learning algorithm which often explicitly stores state values using lookup tables. This implementation has been proven to converge to the optimal solution, but it is often beneficial to use a function-approximation system, such as deep neural networks, to estimate state values. It has been previously observed that Q-learning can be unstable when using value function approximation or when operating in a stochastic environment. This instability can adversely affect the algorithm’s ability to maximize its returns. In this paper, we present a new algorithm called Multi Q-learning to attempt to overcome the instability seen in Q-learning. We test our algorithm on a 4 × 4 grid-world with different stochastic reward functions using various deep neural networks and convolutional networks. Our results show that in most cases, Multi Q-learning outperforms Q-learning, achieving average returns up to 2.5 times higher than Q-learning and having a standard deviation of state values as low as 0.58. 展开更多
关键词 Reinforcement Learning deep Learning Multi q-learning
在线阅读 下载PDF
Multi-User MmWave Beam Tracking via Multi-Agent Deep Q-Learning 被引量:2
13
作者 MENG Fan HUANG Yongming +1 位作者 LU Zhaohua XIAO Huahua 《ZTE Communications》 2023年第2期53-60,共8页
Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynami... Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynamic environments.To reduce the overhead cost,we propose a multi-user beam tracking algorithm using a distributed deep Q-learning method.With online learning of users’moving trajectories,the proposed algorithm learns to scan a beam subspace to maximize the average effective sum rate.Considering practical implementation,we model the continuous beam tracking problem as a non-Markov decision process and thus develop a simplified training scheme of deep Q-learning to reduce the training complexity.Furthermore,we propose a scalable state-action-reward design for scenarios with different users and antenna numbers.Simulation results verify the effectiveness of the designed method. 展开更多
关键词 multi-agent deep q-learning centralized training and distributed execution mmWave communication beam tracking scalability
在线阅读 下载PDF
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
14
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
A Modified Deep Residual-Convolutional Neural Network for Accurate Imputation of Missing Data
15
作者 Firdaus Firdaus Siti Nurmaini +8 位作者 Anggun Islami Annisa Darmawahyuni Ade Iriani Sapitri Muhammad Naufal Rachmatullah Bambang Tutuko Akhiar Wista Arum Muhammad Irfan Karim Yultrien Yultrien Ramadhana Noor Salassa Wandya 《Computers, Materials & Continua》 2025年第2期3419-3441,共23页
Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attentio... Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated the model on publicly available datasets, including Medical Information Mart for Intensive Care (MIMIC-III and MIMIC-IV), which contain critical care patient data, and the Beijing Multi-Site Air Quality dataset, which measures environmental air quality. The proposed DRes-CNN method achieved a root mean square error (RMSE) of 0.00006, highlighting its high accuracy and robustness. We also compared with Low Light-Convolutional Neural Network (LL-CNN) and U-Net methods, which had RMSE values of 0.00075 and 0.00073, respectively. This represented an improvement of approximately 92% over LL-CNN and 91% over U-Net. The results showed that this DRes-CNN-based imputation method outperforms current state-of-the-art models. These results established DRes-CNN as a reliable solution for addressing missing data. 展开更多
关键词 Data imputation missing data deep learning deep residual convolutional neural network
在线阅读 下载PDF
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
16
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(CNN).
在线阅读 下载PDF
Handling class imbalance of radio frequency interference in deep learning-based fast radio burst search pipelines using a deep convolutional generative adversarial network
17
作者 Wenlong Du Yanling Liu Maozheng Chen 《Astronomical Techniques and Instruments》 2025年第1期10-15,共6页
This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the traini... This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline. 展开更多
关键词 Fast radio burst deep convolutional generative adversarial network Class imbalance Radio frequency interference deep learning
在线阅读 下载PDF
DMF: A Deep Multimodal Fusion-Based Network Traffic Classification Model
18
作者 Xiangbin Wang Qingjun Yuan +3 位作者 Weina Niu Qianwei Meng Yongjuan Wang Chunxiang Gu 《Computers, Materials & Continua》 2025年第5期2267-2285,共19页
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods... With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification accuracy.However,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the data.To address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature extraction.Specifically,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective learning.This continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network conditions.Experimental results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods. 展开更多
关键词 deep fusion intrusion detection multimodal learning network traffic classification
在线阅读 下载PDF
Forecasting electricity prices in the spot market utilizing wavelet packet decomposition integrated with a hybrid deep neural network
19
作者 Heping Jia Yuchen Guo +5 位作者 Xiaobin Zhang Qianxin Ma Zhenglin Yang Yaxian Zheng Dan Zeng Dunnan Liu 《Global Energy Interconnection》 2025年第5期874-890,共17页
Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses signif... Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses significant challenges for forecasting.To address the data uncertainty of electricity prices and effectively mitigate gradient issues,overfitting,and computational challenges associated with using a single model during forecasting,this paper proposes a framework for forecasting spot market electricity prices by integrating wavelet packet decomposition(WPD)with a hybrid deep neural network.By ensuring accurate data decomposition,the WPD algorithm aids in detecting fluctuating patterns and isolating random noise.The hybrid model integrates temporal convolutional networks(TCN)and long short-term memory(LSTM)networks to enhance feature extraction and improve forecasting performance.Compared to other techniques,it significantly reduces average errors,decreasing mean absolute error(MAE)by 27.3%,root mean square error(RMSE)by 66.9%,and mean absolute percentage error(MAPE)by 22.8%.This framework effectively captures the intricate fluctuations present in the time series,resulting in more accurate and reliable predictions. 展开更多
关键词 Electricity price forecasting Long and short-term memory Hybrid deep neural network Wavelet packet decomposition Temporal neural network
在线阅读 下载PDF
Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examination
20
作者 Yang-Yang Wang Bin Liu Ji-Han Wang 《World Journal of Gastroenterology》 2025年第36期50-69,共20页
Gastrointestinal(GI)diseases,including gastric and colorectal cancers,signi-ficantly impact global health,necessitating accurate and efficient diagnostic me-thods.Endoscopic examination is the primary diagnostic tool;... Gastrointestinal(GI)diseases,including gastric and colorectal cancers,signi-ficantly impact global health,necessitating accurate and efficient diagnostic me-thods.Endoscopic examination is the primary diagnostic tool;however,its accu-racy is limited by operator dependency and interobserver variability.Advance-ments in deep learning,particularly convolutional neural networks(CNNs),show great potential for enhancing GI disease detection and classification.This review explores the application of CNNs in endoscopic imaging,focusing on polyp and tumor detection,disease classification,endoscopic ultrasound,and capsule endo-scopy analysis.We discuss the performance of CNN models with traditional dia-gnostic methods,highlighting their advantages in accuracy and real-time decision support.Despite promising results,challenges remain,including data availability,model interpretability,and clinical integration.Future directions include impro-ving model generalization,enhancing explainability,and conducting large-scale clinical trials.With continued advancements,CNN-powered artificial intelligence systems could revolutionize GI endoscopy by enhancing early disease detection,reducing diagnostic errors,and improving patient outcomes. 展开更多
关键词 Gastrointestinal diseases Endoscopic examination deep learning Convolutional neural networks Computer-aided diagnosis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部