期刊文献+
共找到920篇文章
< 1 2 46 >
每页显示 20 50 100
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
1
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(cnn).
在线阅读 下载PDF
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
2
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(cnn) 时频变换 TRANSFORMER
在线阅读 下载PDF
基于1DCNN和LSTM融合的超宽带NLoS/LoS识别方法研究
3
作者 郑恩让 孟鑫 +3 位作者 姜苏英 薛晶 张毅 李强 《通信学报》 北大核心 2025年第6期285-302,共18页
为提升超宽带(UWB)定位系统在非视距(NLoS)条件下的测距精度与定位性能,提出一种基于一维卷积-卷积长短期记忆(LSTM)注意力网络(1DCNN-CLANet)的深度学习模型。该模型首先利用卷积神经网络(CNN)提取通道脉冲响应(CIR)的空间特征,并利用... 为提升超宽带(UWB)定位系统在非视距(NLoS)条件下的测距精度与定位性能,提出一种基于一维卷积-卷积长短期记忆(LSTM)注意力网络(1DCNN-CLANet)的深度学习模型。该模型首先利用卷积神经网络(CNN)提取通道脉冲响应(CIR)的空间特征,并利用长短期记忆网络捕捉CIR的时序特征。其次,利用CNN深度挖掘距离数据、信号振幅、最大噪声强度等额外特征。最后,引入注意力机制并构建CIR分支和额外特征分支的融合模型,实现对UWB信号的非视距/视距识别。实验结果表明,复杂环境下1DCNN-CLANet的二分类和四分类识别准确率分别为99.51%和98.47%,优于其他方案。该模型在UWB定位系统中表现出良好的非视距识别能力,具有较强的应用前景。 展开更多
关键词 超宽带 非视距 深度学习模型 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
电网N-1下融合CNN与Transformer的综合能源系统静态安全校核
4
作者 陈厚合 丁唯一 +2 位作者 刘光明 李雪 张儒峰 《电力自动化设备》 北大核心 2025年第5期1-9,18,共10页
风光等新能源高比例渗透衍生出大量的源-荷场景,电-气综合能源系统(IEGS)的N-1安全校核面临计算挑战。深度学习技术在处理大量数据时具备显著优势,为解决该问题提供了新的思路。将评价电力系统安全性的Hyper-box和Hyper-ellipse判据推... 风光等新能源高比例渗透衍生出大量的源-荷场景,电-气综合能源系统(IEGS)的N-1安全校核面临计算挑战。深度学习技术在处理大量数据时具备显著优势,为解决该问题提供了新的思路。将评价电力系统安全性的Hyper-box和Hyper-ellipse判据推广到天然气系统,并形成IEGS综合安全指标以划分子系统的运行状态;构建卷积神经网络(CNN)-Transformer神经网络以适应量测数据与校核目标的非线性关系,实现快速校核;考虑到系统数据的量纲和数值差异大以及系统状态离散化的特点,分别对数据进行Z-score标准化和独热编码数值化以提升校核精度,并设计改进焦点损失函数以进一步提取不同的场景下天然气系统运行状态的变化规律。以含高比例新能源的综合能源系统(E5G5、E39G20系统)为算例,验证所提方法的高效性和准确性。 展开更多
关键词 电-气综合能源系统 N-1安全校核 深度学习 卷积神经网络 Transformer神经网络 改进焦点损失函数
在线阅读 下载PDF
基于VMD-1DCNN-GRU的轴承故障诊断 被引量:1
5
作者 宋金波 刘锦玲 +2 位作者 闫荣喜 王鹏 路敬祎 《吉林大学学报(信息科学版)》 2025年第1期34-42,共9页
针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausd... 针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausdorff Distance)完成去噪,尽可能保留原始信号的特征。其次,将选择的有效信号输入一维卷积神经网络(1DCNN:1D Convolutional Neural Networks)和门控循环单元(GRU:Gate Recurrent Unit)相结合的网络结构(1DCNN-GRU)中完成数据的分类,实现轴承的故障诊断。通过与常见的轴承故障诊断方法比较,所提VMD-1DCNN-GRU模型具有最高的准确性。实验结果验证了该模型对轴承故障有效分类的可行性,具有一定的研究意义。 展开更多
关键词 故障诊断 深度学习 变分模态分解 一维卷积神经网络 门控循环单元
在线阅读 下载PDF
深度CNN模型在嵌入式存算一体架构中的应用 被引量:1
6
作者 谢宾铭 郑磊 汪林 《信息技术》 2025年第4期73-82,共10页
为提升存储和运算性能,将深度CNN模型应用于嵌入式存算一体架构设计之中。改装存储器、运算器和嵌入式处理器的内部结构,加设加速器设备,利用调整电路实现硬件设施的连接。以深度CNN模型作为架构运算业务的执行逻辑,并通过存储模块与运... 为提升存储和运算性能,将深度CNN模型应用于嵌入式存算一体架构设计之中。改装存储器、运算器和嵌入式处理器的内部结构,加设加速器设备,利用调整电路实现硬件设施的连接。以深度CNN模型作为架构运算业务的执行逻辑,并通过存储模块与运算模块的协同工作,实现存算一体软件功能。结果表明:优化设计嵌入式存算一体架构的存储完整度提高了4.4%,架构的运算速度和吞吐量均得到明显提升,即深度CNN网络模型在嵌入式存算一体架构设计中具有较高的应用价值。 展开更多
关键词 深度cnn网络 嵌入式 存算一体架构 协同工作 吞吐量
在线阅读 下载PDF
基于MPCNN模型的sEMG快速迁移学习的手势识别应用研究
7
作者 易鹏 杨晔 严仕嘉 《计算机工程》 北大核心 2025年第1期304-311,共8页
为解决个体间差异性的问题并提高手势识别技术的普适性,提出基于多并行卷积神经网络(MPCNN)的迁移学习策略,旨在实现基于表面肌电信号的高效手势识别。MPCNN通过并行架构和优化的迁移学习机制,对比以往的卷积神经网络(CNN)迁移框架以更... 为解决个体间差异性的问题并提高手势识别技术的普适性,提出基于多并行卷积神经网络(MPCNN)的迁移学习策略,旨在实现基于表面肌电信号的高效手势识别。MPCNN通过并行架构和优化的迁移学习机制,对比以往的卷积神经网络(CNN)迁移框架以更有效地处理不同个体间的生理差异,从而提高模型对新用户的适应性和识别准确率。此外,MPCNN通过减少模型训练时间和提高泛化能力,增强系统的实用性。通过多组实验,包括倍数交叉验证、消融实验和健壮性测试来证实所提策略在多个方面的有效性。实验结果表明,与传统CNN模型相比,提出的MPCNN迁移学习策略显著提升手势识别准确率,在Ninapro DB7数据集上的识别率达到了94.95%,对比CNN迁移学习框架提高了4.38百分点,同时训练时间减少了超过50%,验证了MPCNN迁移模型在减轻训练负担、增强泛化能力和提高抗干扰性方面的优点。基于实验模型对人机交互能力进行了验证,验证了其在肌电控制应用前景。 展开更多
关键词 迁移学习 表面肌电信号 手势识别 深度学习 卷积神经网络 肌电控制
在线阅读 下载PDF
基于CNN-BiLSTM-Attention的深基坑变形预测方法 被引量:2
8
作者 孟飞 郑卓然 +2 位作者 黄文聪 岳学军 张伟锋 《地下空间与工程学报》 北大核心 2025年第S1期87-94,共8页
深基坑变形的准确预测一直是基坑工程面临的关键问题之一,地下空间的复杂性和基坑施工环境的多样性使得传统的预测方法在应对这一问题时显得力不从心。为了提高深基坑变形预测的精准度,提出一种结合卷积神经网络(CNN)、双向长短期记忆... 深基坑变形的准确预测一直是基坑工程面临的关键问题之一,地下空间的复杂性和基坑施工环境的多样性使得传统的预测方法在应对这一问题时显得力不从心。为了提高深基坑变形预测的精准度,提出一种结合卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)和注意力机制(Attention)的深基坑变形预测模型。通过构建时空网格,利用卷积神经网络提取基坑变形的空间特征,结合双向长短时记忆网络对时序特征进行建模,引入注意力机制提高模型对关键时空位置的关注度,最后通过全连接层整合特征,输出预测的监测值。基于广州市某人才公寓深基坑的监测数据进行工程案例验证,通过消融试验和对比试验结果表明,所提方法在深基坑变形预测中精度较高。 展开更多
关键词 深基坑 变形预测 卷积神经网络(cnn) 双向长短期记忆神经网络(BiLSTM) 注意力机制
原文传递
图像处理中CNN与视觉Transformer混合模型研究综述 被引量:6
9
作者 郭佳霖 智敏 +1 位作者 殷雁君 葛湘巍 《计算机科学与探索》 北大核心 2025年第1期30-44,共15页
卷积神经网络(CNN)与视觉Transformer是目前图像处理领域中两大重要的深度学习模型,两者经过多年来不断的研究与进步,已在该领域取得了非凡的成就。近些年来,CNN与视觉Transformer的混合模型正在逐步兴起,广泛的研究不断克服两种模型存... 卷积神经网络(CNN)与视觉Transformer是目前图像处理领域中两大重要的深度学习模型,两者经过多年来不断的研究与进步,已在该领域取得了非凡的成就。近些年来,CNN与视觉Transformer的混合模型正在逐步兴起,广泛的研究不断克服两种模型存在的弱项,高效地发挥出各自的亮点,在图像处理任务中表现出优异的效果。基于CNN与视觉Transformer混合模型进行深入阐述。总体概述了CNN与Vision Transformer模型的架构和优缺点,并总结混合模型的概念及优势。围绕串行结构融合方式、并行结构融合方式、层级交叉结构融合方式以及其他融合方式等四个方面全面回顾梳理了混合模型的研究现状和实际进展,并针对各种融合方式的主要代表模型进行总结与剖析,从多方面对典型混合模型进行评价对比。多角度叙述了混合模型在图像识别、图像分类、目标检测和图像分割等实际图像处理特定领域中应用研究,展现出混合模型在具体实践中的适用性和高效性。深入分析混合模型未来研究方向,并为后续该模型在图像处理中的研究与应用提出展望。 展开更多
关键词 卷积神经网络(cnn) 视觉Transformer 混合模型 图像处理 深度学习
在线阅读 下载PDF
CNN与Transformer协同的多模态边缘检测网络
10
作者 李永辉 赵耀 +2 位作者 加小红 魏琛珍 常文文 《计算机工程与应用》 北大核心 2025年第14期195-205,共11页
边缘检测在计算机视觉任务中扮演至关重要的角色,然而,现有边缘检测算法主要依赖CNN作为编码器,导致其在精细度、准确性以及噪声处理等方面存在缺陷。为了解决这些问题,提出了一个CNN与Transformer协同的多模态边缘检测网络。设计了一... 边缘检测在计算机视觉任务中扮演至关重要的角色,然而,现有边缘检测算法主要依赖CNN作为编码器,导致其在精细度、准确性以及噪声处理等方面存在缺陷。为了解决这些问题,提出了一个CNN与Transformer协同的多模态边缘检测网络。设计了一个基于无参数注意力残差结构的高分辨率特征融合模块,保留图像的底层属性,增强全局特征表示;设计了一种包含多尺度混洗注意力模块的轻量化CNN层来完成梯度编码,捕捉图像的高频属性,利用Transformer架构实现特征编码,构建高层的全局依赖关系,通过融合高频属性和全局依赖关系重构特征表达,将CNN、Transformer以及高分辨率特征融合模块的多尺度特征进行逐层聚合解码,从而高精度定位图像边界。与主流算法相比,所提模型在BSDS500、NYUD-v2上均获得较优指标。 展开更多
关键词 边缘检测 卷积神经网络(cnn) TRANSFORMER 多模态 深度学习
在线阅读 下载PDF
多信息约束的DnCNN技术在压制随机噪声中的应用
11
作者 裴云龙 蒋波 +1 位作者 周衍 尹天豪 《地球物理学进展》 北大核心 2025年第3期1189-1201,共13页
传统的卷积神经网络(CNN)噪声压制技术对满足平稳和高斯随机过程条件的噪声压制较为理想,但大多数实际地震噪声并不符合这些假设条件.地震噪声的非平稳性随着采集时长的增加和环境复杂程度的增加而增大,使得CNN技术在处理复杂地质构造... 传统的卷积神经网络(CNN)噪声压制技术对满足平稳和高斯随机过程条件的噪声压制较为理想,但大多数实际地震噪声并不符合这些假设条件.地震噪声的非平稳性随着采集时长的增加和环境复杂程度的增加而增大,使得CNN技术在处理复杂地质构造时效果不佳.为解决这个问题,本文提出一种基于多信息约束的去噪卷积神经网络(DnCNN)技术,该方法将地震噪声水平估计、地震倾角和断层信息作为约束项融入深度学习网络训练,从而解决了对非平稳高斯随机噪声进行压制过程中可能破坏有效信号的问题.模型测试和实际资料处理结果表明,相比于传统去噪方法和未约束的DnCNN技术,该多信息约束的DnCNN方法能够更好地保护地震的陡倾角和弱小断层信息,具有更高的保真度,同时去噪后的信噪比也得到了明显提高.这为地震数据处理中的随机噪声压制问题提供了一种新的解决方案,对于超深层复杂地质构造的成像具有重要意义. 展开更多
关键词 噪声压制 卷积神经网络 深度学习 训练 多信息约束
原文传递
基于CNN-SVM的行人活动识别方法 被引量:2
12
作者 张帅 李召洋 +1 位作者 陈建广 黄风华 《导航定位学报》 北大核心 2025年第1期87-93,共7页
针对传统行人活动识别方法过度依赖人工手动选择和提取特征,导致特征提取难度大及识别准确率低的问题,提出一种基于卷积神经网络结合支持向量机(CNN-SVM)的行人活动识别模型:将数据输入到卷积神经网络(CNN)与归一化指数函数(Softmax)层... 针对传统行人活动识别方法过度依赖人工手动选择和提取特征,导致特征提取难度大及识别准确率低的问题,提出一种基于卷积神经网络结合支持向量机(CNN-SVM)的行人活动识别模型:将数据输入到卷积神经网络(CNN)与归一化指数函数(Softmax)层相结合的网络中进行训练直至网络收敛,收敛的CNN网络用于自动提取行人活动数据特征;然后利用支持向量机(SVM)取代CNN网络的归一化指数函数(Softmax)层来优化分类效果。实验结果表明,所提出的CNN-SVM模型可达到97.77%的识别准确率,优于对比实验模型,具有较好的行人活动识别效果。 展开更多
关键词 行人活动识别 卷积神经网络(cnn) 支持向量机(SVM) 惯性传感器 深度学习
在线阅读 下载PDF
基于CNN的电力系统静态安全性评估方法研究
13
作者 朱鹏 《自动化仪表》 2025年第4期70-74,共5页
针对现行电力系统安全评估方法存在的局限性,引入了一种基于卷积神经网络(CNN)的数据驱动方法,以提升静态安全性评估的效率与准确性。采用节点电压幅值、有功及无功功率注入量作为CNN模型的输入,通过监督学习将系统运行状态分为安全、... 针对现行电力系统安全评估方法存在的局限性,引入了一种基于卷积神经网络(CNN)的数据驱动方法,以提升静态安全性评估的效率与准确性。采用节点电压幅值、有功及无功功率注入量作为CNN模型的输入,通过监督学习将系统运行状态分为安全、警戒、不安全三类。首先,基于线路过载和节点电压违反情况计算安全指数,并据此确定运行状态标签。然后,训练CNN模型对给定输入进行分类预测。在39节点系统试验中,所开发的CNN模型在训练和测试数据集上的准确率分别达到99.61%和98.82%,显著优于支持向量机算法;在召回率、F1分数等指标上也有优异表现,且预测时间仅为传统潮流计算方法的8.9%。试验结果证明了该方法在实时评估应用中的有效性。该研究为电力系统实时安全评估提供了高效的智能化新途径。 展开更多
关键词 电力系统 静态安全性评估 稳定性 数据驱动模型 卷积神经网络 深度学习
在线阅读 下载PDF
基于CNN和双向GRU混合孪生网络的语音情感识别方法
14
作者 彭鹏 蔡子婷 +3 位作者 刘雯玲 陈才华 曾维 黄宝来 《计算机应用》 北大核心 2025年第8期2515-2521,共7页
针对现有语音情感识别(SER)模型精度较低、泛化能力较差的问题,提出一种孪生的Multi-scale CNNBiGRU网络。该网络通过引入多尺度特征提取器(MSFE)和多维度注意力(MDA)模块构建孪生网络,并利用样本对的形式增加模型训练量,从而提高模型... 针对现有语音情感识别(SER)模型精度较低、泛化能力较差的问题,提出一种孪生的Multi-scale CNNBiGRU网络。该网络通过引入多尺度特征提取器(MSFE)和多维度注意力(MDA)模块构建孪生网络,并利用样本对的形式增加模型训练量,从而提高模型的识别精度,使它能更好地适应复杂的真实应用场景。在IEMOCAP和EMODB这2个公开数据集上的实验结果表明,所提模型在识别精确率上较CNN-BiGRU分别提升了8.28和7.79个百分点。此外,通过收集客服真实语音对话录音构建一个客服语音情感数据集,在该数据集上的实验结果表明,所提模型的识别精确率可达到87.85%,证明所提模型具有良好的泛化性。 展开更多
关键词 语音情感识别 卷积神经网络 双向GRU 混合孪生网络 深度学习
在线阅读 下载PDF
基于MKMC-ResCNN的页岩气压缩机故障诊断
15
作者 王欣 李治钢 +4 位作者 李定夏 吕卓伦 王华 陈明 唐伟 《石油机械》 北大核心 2025年第10期64-71,共8页
页岩气压缩机作为核心设备其智能故障诊断对保障能源安全生产具有重大意义。针对传统诊断方法在复杂工况下面临的特征提取能力不足、多源信号融合效率低等问题,提出基于多尺度核多通道残差卷积神经网络(MKMC-ResCNN)的页岩气压缩机智能... 页岩气压缩机作为核心设备其智能故障诊断对保障能源安全生产具有重大意义。针对传统诊断方法在复杂工况下面临的特征提取能力不足、多源信号融合效率低等问题,提出基于多尺度核多通道残差卷积神经网络(MKMC-ResCNN)的页岩气压缩机智能诊断方法。通过构建融合3×3、5×5、7×7等3种卷积核的并行残差模块,实现多尺度振动特征的层次化提取;采用跨通道特征融合机制整合六维传感器数据,增强工况适应能力;引入余弦退火学习率调度以优化模型收敛过程。试验采集包含5种典型故障状态(活塞磨损、活塞环断裂、气阀弹簧片失效、气阀阀片故障及正常工况)的2 240组多通道振动数据,构建跨工况验证体系。试验结果表明:该方法在5种故障分类任务中达到98.76%的总体准确率,较传统SVM模型提升14.53个百分点;多通道融合策略使变工况下的诊断准确率提高23.85个百分点;与标准ResCNN的对比结果表明,所设计的多尺度模块将准确率提升了4.51个百分点。该成果可为复杂工业设备的智能运维提供具有强泛化能力的解决方案。 展开更多
关键词 页岩气压缩机 故障诊断 深度学习 多尺度核多通道 卷积神经网络 残差网络 振动信号
在线阅读 下载PDF
融合5G和LSTM-CNN的智能电表数据异常检测方法
16
作者 文琴 《通信电源技术》 2025年第16期86-88,共3页
电能计量数据的准确性和可靠性对电力系统安全稳定运行至关重要。传统智能电表数据异常检测方法主要依赖人工抄表和静态阈值判别,存在效率低下、实时性差、适应性不足等问题,难以满足海量电表数据实时监测需求。为解决这些问题,提出融... 电能计量数据的准确性和可靠性对电力系统安全稳定运行至关重要。传统智能电表数据异常检测方法主要依赖人工抄表和静态阈值判别,存在效率低下、实时性差、适应性不足等问题,难以满足海量电表数据实时监测需求。为解决这些问题,提出融合5G和长短期记忆(Long Short-Term Memory,LSTM)、卷积神经网络(Convolutional Neural Network,CNN)的智能电表数据异常检测方法。相较于传统方法,所提方法在准确性和实时性方面均有显著提升,为智能电网数据监测提供了高效可靠的解决方法。 展开更多
关键词 5G 智能电表 异常检测 深度学习 长短期记忆(LSTM) 卷积神经网络(cnn)
在线阅读 下载PDF
基于CBAM-CNN的电力系统暂态电压稳定评估 被引量:4
17
作者 李欣 柳圣池 +3 位作者 李新宇 陈德秋 鲁玲 郭攀锋 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期59-67,75,共10页
为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和... 为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和空间两个独立的维度依次提取特征,提高卷积神经网络对系统暂态电压状态的识别能力。然后,将该模块与微调技术相结合,提高模型在系统拓扑结构改变时的在线更新速度。最后,算例分析验证了所提模型的有效性。 展开更多
关键词 深度学习 卷积神经网络 暂态电压稳定评估 卷积块注意力模块 迁移学习
在线阅读 下载PDF
基于A-BiLSTM和CNN的文本分类 被引量:3
18
作者 黄远 戴晓红 +2 位作者 黄伟建 于钧豪 黄峥 《计算机工程与设计》 北大核心 2024年第5期1428-1434,共7页
为解决单一神经网络不能获取准确全局文本信息的问题,提出一种基于A-BiLSTM双通道和优化CNN的文本分类模型。A-BiLSTM双通道层使用注意力机制关注对文本分类贡献值较大的部分,并用BiLSTM提取文本中上下文语义信息;A-BiLSTM双通道层中将... 为解决单一神经网络不能获取准确全局文本信息的问题,提出一种基于A-BiLSTM双通道和优化CNN的文本分类模型。A-BiLSTM双通道层使用注意力机制关注对文本分类贡献值较大的部分,并用BiLSTM提取文本中上下文语义信息;A-BiLSTM双通道层中将两者输出的特征信息融合,得到高级语义;A-BiLSTM双通道层后,使用优化CNN的强学习能力提取关键局部特征,得到最终文本特征表示。分类器输出文本信息的类别。实验结果表明,该模型分类效果优于其它对比模型,具有良好的泛化能力。 展开更多
关键词 文本分类 深度学习 双通道网络 注意力机制 双向长短时记忆网络 卷积神经网络 词向量模型
在线阅读 下载PDF
水库水位的VMD-CNN-GRU混合预测模型 被引量:2
19
作者 韩莹 王乐豪 +2 位作者 魏平慧 李占东 周文祥 《南京信息工程大学学报》 CAS 北大核心 2024年第2期239-246,共8页
水库水位预测为其运营、防洪、水资源调度管理提供了重要决策支持.准确可靠的预测对水资源的优化管理起着至关重要的作用.针对水库水位数据的非线性、不稳定性以及复杂的时空特性,提出一种融合自适应变分模态分解(VMD)、卷积神经网络(C... 水库水位预测为其运营、防洪、水资源调度管理提供了重要决策支持.准确可靠的预测对水资源的优化管理起着至关重要的作用.针对水库水位数据的非线性、不稳定性以及复杂的时空特性,提出一种融合自适应变分模态分解(VMD)、卷积神经网络(CNN)和门控循环单元(GRU)的混合水库水位预测模型.VMD通过对水位序列进行分解消除噪声,CNN用于有效提取水位数据的局部特征,GRU用于提取水位数据的深层时间特征.以葠窝水库日水位为例,与多个相关模型对比分析,结果表明:精度方面,新模型在选取的评价指标上均表现最佳;运算效率方面,本文选择的GRU与长短时记忆网络(LSTM)相比,运算效率显著提高.新模型预测的高精度、高运算效率更能满足实际水库水位实时调度的需求. 展开更多
关键词 水位预测 变分模态分解 门控循环单元 卷积神经网络 深度学习
在线阅读 下载PDF
融合CNN和Transformer的图像去噪网络 被引量:1
20
作者 姜文涛 卜艺凡 《计算机系统应用》 2024年第7期39-51,共13页
目前基于深度学习的图像去噪算法无法综合考虑局部和全局的特征信息,进而影响细节处的图像去噪效果,针对该问题,提出了融合CNN和Transformer的图像去噪网络(hybrid CNN and Transformer image denoising network,HCT-Net).首先,提出CNN... 目前基于深度学习的图像去噪算法无法综合考虑局部和全局的特征信息,进而影响细节处的图像去噪效果,针对该问题,提出了融合CNN和Transformer的图像去噪网络(hybrid CNN and Transformer image denoising network,HCT-Net).首先,提出CNN和Transformer耦合模块(CNN and Transformer coupling block,CTB),构造融合卷积和通道自注意力的双分支结构,缓解单纯依赖Transformer造成的高额计算开销,同时动态分配注意力权重使网络关注重要图像特征.其次,设计自注意力增强卷积模块(self-attention enhanced convolution module,SAConv),采用递进式组合模块和非线性变换,减弱噪声信号干扰,提升在复杂噪声水平下识别局部特征的能力.在6个基准数据集上的实验结果表明,HCT-Net相比当前一些先进的去噪方法具有更好的特征感知能力,能够抑制高频的噪声信号从而恢复图像的边缘和细节信息. 展开更多
关键词 图像去噪 深度学习 TRANSFORMER 卷积神经网络 注意力机制
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部