期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bridge detection method for HSRRSIs based on YOLOv5 with a decoupled head 被引量:4
1
作者 Mulan Qiua Liang Huang Bo-Hui Tang 《International Journal of Digital Earth》 SCIE EI 2023年第1期113-129,共17页
The different imaging conditions of high spatial resolution remote sensing images(HSRRSIs)tend to cause large differences in the background information of bridges from the images,including problems of difficult detect... The different imaging conditions of high spatial resolution remote sensing images(HSRRSIs)tend to cause large differences in the background information of bridges from the images,including problems of difficult detection of multiscale bridges,leakage of small bridges and insufficient detection accuracy for their detection.To address these problems,a YOLOv5 network with a decoupled head for the automatic detection of bridges in HSRRIs is proposed in this paper.First,the problem of inconsistent scale of information fusion of each feature in the feature pyramid network is solved using a weighted bi-directional feature pyramid network(BiFPN).Then,the convolutional block attention module(CBAM)is fused into the three effective feature layers after feature pyramid network processing.The bridge feature information is effectively extracted from the channel and spatial dimensions.Next,the decoupled head is fused in the YOLO Head to separate the classifier and regressor to speed up the network convergence and improve the network detection accuracy simultaneously.Finally,the practical effect is evaluated by calculating the average precision(AP).According to the experimental results,the AP of the proposed method is 98.1%,which is improved by 4.1%∼23.5%compared with other models. 展开更多
关键词 HSRRIs bridge detection BiFPN CBAM feature fusion decoupled head
原文传递
SAD-YOLOv5:基于YOLOv5的铝合金表面缺陷检测方法
2
作者 袁俊森 凌六一 《重庆工商大学学报(自然科学版)》 2025年第3期77-83,共7页
目的铝合金铸件表面缺陷检测是工业中的一个重要应用,正确且快速地检测出铸件表面的缺陷可以大大提高产量和质量。针对图像中缺陷目标较小,缺陷类别易混淆,定位不精准等问题,提出了一种在一级检测器基础上改进的SAD-YOLOv5模型。方法针... 目的铝合金铸件表面缺陷检测是工业中的一个重要应用,正确且快速地检测出铸件表面的缺陷可以大大提高产量和质量。针对图像中缺陷目标较小,缺陷类别易混淆,定位不精准等问题,提出了一种在一级检测器基础上改进的SAD-YOLOv5模型。方法针对一般卷积神经网络中由于跨步卷积和池化层导致网络训练过程中信息丢失的问题,通过引入空间到深度(space-to-depth,SPD)模块避免细粒度信息的丢失,提高对小目标的特征学习能力;为进一步提升网络模型精度,在网络的Head中引入自适应空间特征融合(adaptively spatial feature fusion,ASFF)和Decoupled Head,其中ASFF通过实现不同特征之间的自适应融合,抑制了不同尺度特征之间的不一致性,保留更有鉴别性的信息,从而提升网络学习能力;使用Decoupled Head替换原先的耦合头,将分类和回归进行解耦,使分类更加关注纹理信息,回归更加关注边缘信息,二者各司其职,进一步提升网络判断能力。结果在自己拍摄的铸件缺陷检测数据集中的测试结果表明,SAD-YOLOv5的mAP@0.5和mAP@0.5:0.95分别为95.1%和68%,较基线模型(YOLOv5)分别提升了1%和3.3%。结论SAD-YOLO5能更准确地完成铝合金铸件的表面缺陷检测任务。 展开更多
关键词 铝合金铸件 表面缺陷检测 YOLOv5 SPD ASFF decoupled head
在线阅读 下载PDF
Efficient forest fire detection based on an improved YOLO model 被引量:2
3
作者 Lei Cao Zirui Shen Sheng Xu 《Visual Intelligence》 2024年第1期240-246,共7页
A forest fire is a natural disaster characterized by rapid spread,difficulty in extinguishing,and widespread destruction,which requires an efficient response.Existing detection methods fail to balance global and local... A forest fire is a natural disaster characterized by rapid spread,difficulty in extinguishing,and widespread destruction,which requires an efficient response.Existing detection methods fail to balance global and local fire features,resulting in the false detection of small or hidden fires.In this paper,we propose a novel detection technique based on an improved YOLO v5 model to enhance the visual representation of forest fires and retain more information about global interactions.We add a plug-and-play global attention mechanism to improve the efficiency of neck and backbone feature extraction of the YOLO v5 model.Then,a re-parameterized convolutional module is designed,and a decoupled detection head is used to accelerate the convergence speed.Finally,a weighted bi-directional feature pyramid network(BiFPN)is introduced to merge feature information for local information processing.In the evaluation,we use the complete intersection over union(CIoU)loss function to optimize the multi-task loss for different kinds of forest fires.Experiments show that the precision,recall,and mean average precision are increased by 4.2%,3.8%,and 4.6%,respectively,compared with the classic YOLO v5 model.In particular,the mAP@0.5:0.95 is 2.2% higher than the other detection methods,while meeting the requirements of real-time detection. 展开更多
关键词 Deep learning Forest fire detection Attention mechanism decoupled detection head Re-parameterized convolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部