Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for tem...Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for temporal coherence across frames.In this paper,we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network(DD-GAN).The DDGAN comprises a Deep Deconvolutional Neural Network(DDNN)as a Generator(G)and a modified Deep Convolutional Neural Network(DCNN)as a Discriminator(D)to ensure temporal coherence between adjacent frames.The proposed research involves several steps.First,the input text is fed into a Long Short Term Memory(LSTM)based text encoder and then smoothed using Conditioning Augmentation(CA)techniques to enhance the effectiveness of the Generator(G).Next,using a DDNN to generate video frames by incorporating enhanced text and random noise and modifying a DCNN to act as a Discriminator(D),effectively distinguishing between generated and real videos.This research evaluates the quality of the generated videos using standard metrics like Inception Score(IS),Fréchet Inception Distance(FID),Fréchet Inception Distance for video(FID2vid),and Generative Adversarial Metric(GAM),along with a human study based on realism,coherence,and relevance.By conducting experiments on Single-Digit Bouncing MNIST GIFs(SBMG),Two-Digit Bouncing MNIST GIFs(TBMG),and a custom dataset of essential mathematics videos with related text,this research demonstrates significant improvements in both metrics and human study results,confirming the effectiveness of DD-GAN.This research also took the exciting challenge of generating preschool math videos from text,handling complex structures,digits,and symbols,and achieving successful results.The proposed research demonstrates promising results for generating coherent videos from textual input.展开更多
In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a s...In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods.展开更多
Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highl...Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highly computationally demanding or sensitive to parameters.A deconvolution method, based on modifications of Clean based on Source Coherence(CLEAN-SC), is proposed for coherent sources localization. This method is called Coherence CLEAN-SC(C–CLEAN-SC). C–CLEAN-SC is able to locate coherent and incoherent sources in simulation and experimental cases. It has a high computational efficiency and does not require pre-set parameters.展开更多
The performance of the deconvolution algorithm plays a crucial role in data processing of radio interferometers.The multi-scale multi-frequency synthesis(MSMFS)CLEAN is a widely used deconvolution algorithm for radio ...The performance of the deconvolution algorithm plays a crucial role in data processing of radio interferometers.The multi-scale multi-frequency synthesis(MSMFS)CLEAN is a widely used deconvolution algorithm for radio interferometric imaging,which combines the advantages of both wide-band synthesis imaging and multi-scale imaging and can substantially improve performance.However,how best to effectively determine the optimal scale is an important problem when implementing the MSMFS CLEAN algorithm.In this study,we proposed a Gaussian fitting method for multiple sources based on the gradient descent algorithm,with consideration of the influence of the point spread function(PSF).After fitting,we analyzed the fitting components using statistical analysis to derive reasonable scale information through the model parameters.A series of simulation validations demonstrated that the scales extracted by our proposed algorithm are accurate and reasonable.The proposed method can be applied to the deconvolution algorithm and provide modeling analysis for Gaussian sources,offering data support for source extraction algorithms.展开更多
This work focuses on enhancing low frequency seismic data using a convolutional neural network trained on synthetic data.Traditional seismic data often lack both high and low frequencies,which are essential for detail...This work focuses on enhancing low frequency seismic data using a convolutional neural network trained on synthetic data.Traditional seismic data often lack both high and low frequencies,which are essential for detailed geological interpretation and various geophysical applications.Low frequency data is particularly valuable for reducing wavelet sidelobes and improving full waveform inversion(FWI).Conventional methods for bandwidth extension include seismic deconvolution and sparse inversion,which have limitations in recovering low frequencies.The study explores the potential of the U-net,which has been successful in other geophysical applications such as noise attenuation and seismic resolution enhancement.The novelty in our approach is that we do not rely on computationally expensive finite difference modelling to create training data.Instead,our synthetic training data is created from individual randomly perturbed events with variations in bandwidth,making it more adaptable to different data sets compared to previous deep learning methods.The method was tested on both synthetic and real seismic data,demonstrating effective low frequency reconstruction and sidelobe reduction.With a synthetic full waveform inversion to recover a velocity model and a seismic amplitude inversion to estimate acoustic impedance we demonstrate the validity and benefit of the proposed method.Overall,the study presents a robust approach to seismic bandwidth extension using deep learning,emphasizing the importance of diverse and well-designed but computationally inexpensive synthetic training data.展开更多
Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsiste...Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsistency or discontinuity.Therefore,in this study,the local dip angle was used to obtain the structural information and construct the spatial structurally constraint operator.This operator is then introduced into multichannel deconvolution as a regularization operator to improve the resolution and maintain the transverse continuity of seismic data.Model tests and actual seismic data processing have demonstrated the effectiveness and practicability of this method.展开更多
Double perovskite matrix materials have recently attracted considerable interest due to their structural flexibility,ease of doping,and excellent thermal stability.While photoluminescence(PL)studies of rare-earth-dope...Double perovskite matrix materials have recently attracted considerable interest due to their structural flexibility,ease of doping,and excellent thermal stability.While photoluminescence(PL)studies of rare-earth-doped double perovskites are common,research on their thermoluminescence(TL)properties is less extensive.This study synthesized a series of Y_(2-x)Sm_(x)MgTiO_(6)(0≤x≤0.1)samples using a high-temperature solid-state method.X-ray diffraction(XRD)analysis confirmed a monoclinic crystal structure(space group P2_(1)∕n),with Sm^(3+)ions substituting for Y^(3+)ions in Y_(2)MgTiO_(6).The PL results indicated that the optimal doping concentration was Y_(1.95)Sm_(0.05)MgTiO_(6),exhibiting emission peaks at 568,605,652,and 715 nm under 409 nm blue light excitation.The TL measurements for different doping concentrations showed that the Y_(1.98)Sm_(0.02)MgTiO_(6)phosphors exhibited the strongest TL signals.The TL peaks observed at 530 and 610 K correspond to defects in the matrix and Sm^(3+)dopants,respectively.The T_(m)-T_(stop)analysis revealed that the TL curve of Y_(1.98)Sm_(0.02)MgTiO_(6)phosphors was a superposition of seven peaks.Computerized glow curve deconvolution(CGCD)was performed on the TL of the sample according to the results of three-dimensional thermoluminescence spectra(3D-TL)and T_(m)-T_(stop),and the trap depths in the sample were estimated to range from 0.69 to 1.49 eV.Additionally,the lifetimes of each overlapping peak were calculated using the fitting parameters.Furthermore,the dose-response test showed that the saturation dose of the sample was high(9956 Gy).Therefore,this material can serve as a thermoluminescent dosimeter for high-dose measurements.The saturation dose for the lowest-temperature overlapping peak was 102 Gy,which correlated with its specific energy-level lifetime,whereas the other overlapping peaks also exhibited favorable linear relationships.展开更多
Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods.Unfortu-nately,its application in optical coherence tomography(OCT)is often hindered by sensitivity to noise,which ...Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods.Unfortu-nately,its application in optical coherence tomography(OCT)is often hindered by sensitivity to noise,which leads to ad-ditive ringing artifacts.These artifacts considerably degrade the quality of deconvolved images,thereby limiting its effect-iveness in OCT imaging.In this study,we propose a framework that integrates numerical random phase masks into the deconvolution process,effectively eliminating these artifacts and enhancing image clarity.The optimized joint operation of an iterative Richardson-Lucy deconvolution and numerical synthesis of random phase masks(RPM),termed as De-conv-RPM,enables a 2.5-fold reduction in full width at half-maximum(FWHM).We demonstrate that the Deconv-RPM method significantly enhances image clarity,allowing for the discernment of previously unresolved cellular-level details in nonkeratinized epithelial cells ex vivo and moving blood cells in vivo.展开更多
Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the r...Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the reduced resolution,providing improved image details that can greatly facilitate scientific discovery.Among these methods,deconvolution techniques are straightforward,yet either require known prior information or struggle to tackle large experimental data.Deep learning(DL)-based super-resolution(SR)methods handle large data well,however data scarcity and model generalizability are problematic.In addition,current image restoration methods are mostly offline and inefficient for many beamlines where high data volumes and data complexity issues are encountered.To overcome these limitations,an online image-restoration pipeline that adaptably selects suitable algorithms and models from a method repertoire is promising.In this study,using both deconvolution and pretrained DL-based SR models,we show that different restoration efficacies can be achieved on different types of synchrotron experimental data.We describe the necessity,feasibility,and significance of constructing such an image-restoration pipeline for future synchrotron experiments.展开更多
In the field of array signal processing,uniform linear arrays(ULAs)are widely used to detect/separate a weak target and estimate its direction of arrival from interference and noise.Conventional beamforming(CBF)is rob...In the field of array signal processing,uniform linear arrays(ULAs)are widely used to detect/separate a weak target and estimate its direction of arrival from interference and noise.Conventional beamforming(CBF)is robust but restricted by a wide mainlobe and high sidelobe level.Covariance-matrix-inversed beamforming techniques,such as the minimum variance distortionless response and multiple signal classification,are sensitive to signal mismatch and data snapshots and exhibit high-resolution performance because of the narrow mainlobe and low sidelobe level.Therefore,compared with the wideband CBF,this study proposes a robust focused-and-deconvolved conventional beamforming(RFD-CBF),utilizing the Richardson–Lucy(R-L)iterative algorithm to deconvolve the focused conventional beam power of a half-wavelength spaced ULA.Then,the focused-and-deconvolved beam power achieves a narrower mainlobe and lower sidelobe level while retaining the robustness of wideband CBF.Moreover,compared with the wideband CBF,RFD-CBF can obtain a higher output signal-to-noise ratio(SNR).Finally,the performance of RFD-CBF is evaluated through numerical simulation and verified by sea trial data processing.展开更多
This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows t...This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.展开更多
Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmissi...Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.展开更多
Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvol...Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications.展开更多
The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurfac...The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.展开更多
Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviat...Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.展开更多
The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such prob...The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such problems, we propose a novel prestack nonstationary deconvolution approach. We introduce the radial trace (RT) transform to the nonstationary deconvolution, we estimate the nonstationary deconvolution factor with hyperbolic smoothing based on variable-step sampling (VSS) in the RT domain, and we obtain the high-resolution prestack nonstationary deconvolution data. The RT transform maps the shot record from the offset and traveltime coordinates to those of apparent velocity and traveltime. The ray paths of the traces in the RT better satisfy the assumptions of the convolutional model. The proposed method combines the advantages of stationary deconvolution and inverse Q filtering, without prior information for Q. The nonstationary deconvolution in the RT domain is more suitable than that in the space-time (XT) domain for prestack data because it is the generalized extension of normal incidence. Tests with synthetic and real data demonstrate that the proposed method is more effective in compensating for large-offset and deep data.展开更多
The Robinson convolution model is mainly restricted by three inappropriate assumptions, i.e., statistically white reflectivity, minimum-phase wavelet, and stationarity. Modern reflectivity inversion methods(e.g., spa...The Robinson convolution model is mainly restricted by three inappropriate assumptions, i.e., statistically white reflectivity, minimum-phase wavelet, and stationarity. Modern reflectivity inversion methods(e.g., sparsity-constrained deconvolution) generally attempt to suppress the problems associated with the first two assumptions but often ignore that seismic traces are nonstationary signals, which undermines the basic assumption of unchanging wavelet in reflectivity inversion. Through tests on reflectivity series, we confirm the effects of nonstationarity on reflectivity estimation and the loss of significant information, especially in deep layers. To overcome the problems caused by nonstationarity, we propose a nonstationary convolutional model, and then use the attenuation curve in log spectra to detect and correct the influences of nonstationarity. We use Gabor deconvolution to handle nonstationarity and sparsity-constrained deconvolution to separating reflectivity and wavelet. The combination of the two deconvolution methods effectively handles nonstationarity and greatly reduces the problems associated with the unreasonable assumptions regarding reflectivity and wavelet. Using marine seismic data, we show that correcting nonstationarity helps recover subtle reflectivity information and enhances the characterization of details with respect to the geological record.展开更多
We propose a new automatic method for the interpretation of potential fi eld data, called the RDAS–Euler method, which is based on Euler's deconvolution and analytic signal methods. The proposed method can estimate ...We propose a new automatic method for the interpretation of potential fi eld data, called the RDAS–Euler method, which is based on Euler's deconvolution and analytic signal methods. The proposed method can estimate the horizontal and vertical extent of geophysical anomalies without prior information of the nature of the anomalies(structural index). It also avoids inversion errors because of the erroneous choice of the structural index N in the conventional Euler deconvolution method. The method was tested using model gravity anomalies. In all cases, the misfi t between theoretical values and inversion results is less than 10%. Relative to the conventional Euler deconvolution method, the RDAS–Euler method produces inversion results that are more stable and accurate. Finally, we demonstrate the practicability of the method by applying it to Hulin Basin in Heilongjiang province, where the proposed method produced more accurate data regarding the distribution of faults.展开更多
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.61977029).
文摘Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for temporal coherence across frames.In this paper,we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network(DD-GAN).The DDGAN comprises a Deep Deconvolutional Neural Network(DDNN)as a Generator(G)and a modified Deep Convolutional Neural Network(DCNN)as a Discriminator(D)to ensure temporal coherence between adjacent frames.The proposed research involves several steps.First,the input text is fed into a Long Short Term Memory(LSTM)based text encoder and then smoothed using Conditioning Augmentation(CA)techniques to enhance the effectiveness of the Generator(G).Next,using a DDNN to generate video frames by incorporating enhanced text and random noise and modifying a DCNN to act as a Discriminator(D),effectively distinguishing between generated and real videos.This research evaluates the quality of the generated videos using standard metrics like Inception Score(IS),Fréchet Inception Distance(FID),Fréchet Inception Distance for video(FID2vid),and Generative Adversarial Metric(GAM),along with a human study based on realism,coherence,and relevance.By conducting experiments on Single-Digit Bouncing MNIST GIFs(SBMG),Two-Digit Bouncing MNIST GIFs(TBMG),and a custom dataset of essential mathematics videos with related text,this research demonstrates significant improvements in both metrics and human study results,confirming the effectiveness of DD-GAN.This research also took the exciting challenge of generating preschool math videos from text,handling complex structures,digits,and symbols,and achieving successful results.The proposed research demonstrates promising results for generating coherent videos from textual input.
基金funded by the Undergraduate Higher Education Teaching and Research Project(No.FBJY20230216)Research Projects of Putian University(No.2023043)the Education Department of the Fujian Province Project(No.JAT220300).
文摘In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods.
基金supported by the National Science and Technology Major Project of China (No. 2017-II-003–0015)。
文摘Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highly computationally demanding or sensitive to parameters.A deconvolution method, based on modifications of Clean based on Source Coherence(CLEAN-SC), is proposed for coherent sources localization. This method is called Coherence CLEAN-SC(C–CLEAN-SC). C–CLEAN-SC is able to locate coherent and incoherent sources in simulation and experimental cases. It has a high computational efficiency and does not require pre-set parameters.
基金supported by the China National SKA Program(2020SKA0110300)the Natural Science Foundation of China(12433012,12373097)the Guangdong Province Basic and Applied Basic Research Foundation Project of Guangdong Province(2024A1515011503).
文摘The performance of the deconvolution algorithm plays a crucial role in data processing of radio interferometers.The multi-scale multi-frequency synthesis(MSMFS)CLEAN is a widely used deconvolution algorithm for radio interferometric imaging,which combines the advantages of both wide-band synthesis imaging and multi-scale imaging and can substantially improve performance.However,how best to effectively determine the optimal scale is an important problem when implementing the MSMFS CLEAN algorithm.In this study,we proposed a Gaussian fitting method for multiple sources based on the gradient descent algorithm,with consideration of the influence of the point spread function(PSF).After fitting,we analyzed the fitting components using statistical analysis to derive reasonable scale information through the model parameters.A series of simulation validations demonstrated that the scales extracted by our proposed algorithm are accurate and reasonable.The proposed method can be applied to the deconvolution algorithm and provide modeling analysis for Gaussian sources,offering data support for source extraction algorithms.
文摘This work focuses on enhancing low frequency seismic data using a convolutional neural network trained on synthetic data.Traditional seismic data often lack both high and low frequencies,which are essential for detailed geological interpretation and various geophysical applications.Low frequency data is particularly valuable for reducing wavelet sidelobes and improving full waveform inversion(FWI).Conventional methods for bandwidth extension include seismic deconvolution and sparse inversion,which have limitations in recovering low frequencies.The study explores the potential of the U-net,which has been successful in other geophysical applications such as noise attenuation and seismic resolution enhancement.The novelty in our approach is that we do not rely on computationally expensive finite difference modelling to create training data.Instead,our synthetic training data is created from individual randomly perturbed events with variations in bandwidth,making it more adaptable to different data sets compared to previous deep learning methods.The method was tested on both synthetic and real seismic data,demonstrating effective low frequency reconstruction and sidelobe reduction.With a synthetic full waveform inversion to recover a velocity model and a seismic amplitude inversion to estimate acoustic impedance we demonstrate the validity and benefit of the proposed method.Overall,the study presents a robust approach to seismic bandwidth extension using deep learning,emphasizing the importance of diverse and well-designed but computationally inexpensive synthetic training data.
基金supported by the basic and forward-looking project(No.2023YQX302)。
文摘Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsistency or discontinuity.Therefore,in this study,the local dip angle was used to obtain the structural information and construct the spatial structurally constraint operator.This operator is then introduced into multichannel deconvolution as a regularization operator to improve the resolution and maintain the transverse continuity of seismic data.Model tests and actual seismic data processing have demonstrated the effectiveness and practicability of this method.
基金supported by the Zhanjiang Science and Technology Plan Project(No.2022A05022)Science and Technology Development Special Project of Zhanjiang(No.2023A21616)Research Project of Guangdong Ocean University(No.060302112102).
文摘Double perovskite matrix materials have recently attracted considerable interest due to their structural flexibility,ease of doping,and excellent thermal stability.While photoluminescence(PL)studies of rare-earth-doped double perovskites are common,research on their thermoluminescence(TL)properties is less extensive.This study synthesized a series of Y_(2-x)Sm_(x)MgTiO_(6)(0≤x≤0.1)samples using a high-temperature solid-state method.X-ray diffraction(XRD)analysis confirmed a monoclinic crystal structure(space group P2_(1)∕n),with Sm^(3+)ions substituting for Y^(3+)ions in Y_(2)MgTiO_(6).The PL results indicated that the optimal doping concentration was Y_(1.95)Sm_(0.05)MgTiO_(6),exhibiting emission peaks at 568,605,652,and 715 nm under 409 nm blue light excitation.The TL measurements for different doping concentrations showed that the Y_(1.98)Sm_(0.02)MgTiO_(6)phosphors exhibited the strongest TL signals.The TL peaks observed at 530 and 610 K correspond to defects in the matrix and Sm^(3+)dopants,respectively.The T_(m)-T_(stop)analysis revealed that the TL curve of Y_(1.98)Sm_(0.02)MgTiO_(6)phosphors was a superposition of seven peaks.Computerized glow curve deconvolution(CGCD)was performed on the TL of the sample according to the results of three-dimensional thermoluminescence spectra(3D-TL)and T_(m)-T_(stop),and the trap depths in the sample were estimated to range from 0.69 to 1.49 eV.Additionally,the lifetimes of each overlapping peak were calculated using the fitting parameters.Furthermore,the dose-response test showed that the saturation dose of the sample was high(9956 Gy).Therefore,this material can serve as a thermoluminescent dosimeter for high-dose measurements.The saturation dose for the lowest-temperature overlapping peak was 102 Gy,which correlated with its specific energy-level lifetime,whereas the other overlapping peaks also exhibited favorable linear relationships.
基金supported by the Guangdong Natural Science Fund General Program (2023A1515011289)Singapore Ministry of Health's National Medical Research Council under its Open Fund Individual Research Grant (MOH-OFIRG19may-0009)+2 种基金Ministry of Education Singapore under its Academic Research Fund Tier 1 (RG35/22)Academic Research Funding Tier 2 (MOE-T2EP30120-0001)China-Singapore International Joint Research Institute (203-A022001).
文摘Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods.Unfortu-nately,its application in optical coherence tomography(OCT)is often hindered by sensitivity to noise,which leads to ad-ditive ringing artifacts.These artifacts considerably degrade the quality of deconvolved images,thereby limiting its effect-iveness in OCT imaging.In this study,we propose a framework that integrates numerical random phase masks into the deconvolution process,effectively eliminating these artifacts and enhancing image clarity.The optimized joint operation of an iterative Richardson-Lucy deconvolution and numerical synthesis of random phase masks(RPM),termed as De-conv-RPM,enables a 2.5-fold reduction in full width at half-maximum(FWHM).We demonstrate that the Deconv-RPM method significantly enhances image clarity,allowing for the discernment of previously unresolved cellular-level details in nonkeratinized epithelial cells ex vivo and moving blood cells in vivo.
基金supported by the Beijing Natural Science Foundation(No.1234042)the National Key Research and Development Program for Young Scientists(No.2023YFA1609900)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB37000000)the National Natural Science Foundation of China(No.12305371)。
文摘Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the reduced resolution,providing improved image details that can greatly facilitate scientific discovery.Among these methods,deconvolution techniques are straightforward,yet either require known prior information or struggle to tackle large experimental data.Deep learning(DL)-based super-resolution(SR)methods handle large data well,however data scarcity and model generalizability are problematic.In addition,current image restoration methods are mostly offline and inefficient for many beamlines where high data volumes and data complexity issues are encountered.To overcome these limitations,an online image-restoration pipeline that adaptably selects suitable algorithms and models from a method repertoire is promising.In this study,using both deconvolution and pretrained DL-based SR models,we show that different restoration efficacies can be achieved on different types of synchrotron experimental data.We describe the necessity,feasibility,and significance of constructing such an image-restoration pipeline for future synchrotron experiments.
文摘In the field of array signal processing,uniform linear arrays(ULAs)are widely used to detect/separate a weak target and estimate its direction of arrival from interference and noise.Conventional beamforming(CBF)is robust but restricted by a wide mainlobe and high sidelobe level.Covariance-matrix-inversed beamforming techniques,such as the minimum variance distortionless response and multiple signal classification,are sensitive to signal mismatch and data snapshots and exhibit high-resolution performance because of the narrow mainlobe and low sidelobe level.Therefore,compared with the wideband CBF,this study proposes a robust focused-and-deconvolved conventional beamforming(RFD-CBF),utilizing the Richardson–Lucy(R-L)iterative algorithm to deconvolve the focused conventional beam power of a half-wavelength spaced ULA.Then,the focused-and-deconvolved beam power achieves a narrower mainlobe and lower sidelobe level while retaining the robustness of wideband CBF.Moreover,compared with the wideband CBF,RFD-CBF can obtain a higher output signal-to-noise ratio(SNR).Finally,the performance of RFD-CBF is evaluated through numerical simulation and verified by sea trial data processing.
文摘This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074409 and 12374021)。
文摘Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.
文摘Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.42325406 and 42304187)the China Postdoctoral Science Foundation(Grant No.2023M733476)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR082)the National Key R&D Program of China(Grant No.2022YFF0503203)the Key Research Program of the Institute of Geology and GeophysicsChinese Academy of Sciences(Grant Nos.IGGCAS-202101 and IGGCAS-202401).
文摘The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.
基金sponsored by the National Natural Science Foundation of China(NSFC)under the grant numbers(11773073,11873027,U2031140,11833010)Yunnan Key Laboratory of Solar Physics and Space Science under the number 202205AG070009+1 种基金Yunnan Provincial Science and Technology Department(202103AD50013,202105AB160001,202305AH340002)the GHfund A202302013242 and CAS“Light of West China”Program 202305AS350029.
文摘Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.
基金financially supported by the National Science and Technology Major Project of China(No.2011ZX05023-005-005)the National Natural Science Foundation of China(No.41274137)
文摘The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such problems, we propose a novel prestack nonstationary deconvolution approach. We introduce the radial trace (RT) transform to the nonstationary deconvolution, we estimate the nonstationary deconvolution factor with hyperbolic smoothing based on variable-step sampling (VSS) in the RT domain, and we obtain the high-resolution prestack nonstationary deconvolution data. The RT transform maps the shot record from the offset and traveltime coordinates to those of apparent velocity and traveltime. The ray paths of the traces in the RT better satisfy the assumptions of the convolutional model. The proposed method combines the advantages of stationary deconvolution and inverse Q filtering, without prior information for Q. The nonstationary deconvolution in the RT domain is more suitable than that in the space-time (XT) domain for prestack data because it is the generalized extension of normal incidence. Tests with synthetic and real data demonstrate that the proposed method is more effective in compensating for large-offset and deep data.
基金funded by the National Basic Research Program of China(973 Program)(Grant No.2011CB201100)Major Program of the National Natural Science Foundation of China(Grant No.2011ZX05004003)
文摘The Robinson convolution model is mainly restricted by three inappropriate assumptions, i.e., statistically white reflectivity, minimum-phase wavelet, and stationarity. Modern reflectivity inversion methods(e.g., sparsity-constrained deconvolution) generally attempt to suppress the problems associated with the first two assumptions but often ignore that seismic traces are nonstationary signals, which undermines the basic assumption of unchanging wavelet in reflectivity inversion. Through tests on reflectivity series, we confirm the effects of nonstationarity on reflectivity estimation and the loss of significant information, especially in deep layers. To overcome the problems caused by nonstationarity, we propose a nonstationary convolutional model, and then use the attenuation curve in log spectra to detect and correct the influences of nonstationarity. We use Gabor deconvolution to handle nonstationarity and sparsity-constrained deconvolution to separating reflectivity and wavelet. The combination of the two deconvolution methods effectively handles nonstationarity and greatly reduces the problems associated with the unreasonable assumptions regarding reflectivity and wavelet. Using marine seismic data, we show that correcting nonstationarity helps recover subtle reflectivity information and enhances the characterization of details with respect to the geological record.
基金supported by the National High Technology Research and Development Program of China(No.2006AA06A208)
文摘We propose a new automatic method for the interpretation of potential fi eld data, called the RDAS–Euler method, which is based on Euler's deconvolution and analytic signal methods. The proposed method can estimate the horizontal and vertical extent of geophysical anomalies without prior information of the nature of the anomalies(structural index). It also avoids inversion errors because of the erroneous choice of the structural index N in the conventional Euler deconvolution method. The method was tested using model gravity anomalies. In all cases, the misfi t between theoretical values and inversion results is less than 10%. Relative to the conventional Euler deconvolution method, the RDAS–Euler method produces inversion results that are more stable and accurate. Finally, we demonstrate the practicability of the method by applying it to Hulin Basin in Heilongjiang province, where the proposed method produced more accurate data regarding the distribution of faults.