Numerous studies have shown that topical application of mitomycin C after surgical decompression effectively reduces scar adhesion. However, the underlying mechanisms remain unclear. In this study, we investigated the...Numerous studies have shown that topical application of mitomycin C after surgical decompression effectively reduces scar adhesion. However, the underlying mechanisms remain unclear. In this study, we investigated the effect of mitomycin C on the proliferation and apoptosis of human epidural scar fibroblasts. Human epidural scar fibroblasts were treated with various concentrations of mitomycin C (1, 5, 10, 20, 40 μg/mL) for 12, 24 and 48 hours. Mitomycin C suppressed the growth of these cells in a dose- and time-dependent manner. Mitomycin C upregulated the expression levels of Fas, DR4, DR5, cleaved caspase-8/9, Bax, Bim and cleaved caspase-3 proteins, and it downregulated Bcl-2 and Bcl-xL expression. In addition, inhibitors of caspase-8 and caspase-9 (Z-IETD-FMK and Z-LEHD-FMK, respectively) did not fully inhibit mitomycin C-induced apoptosis. Furthermore, mitomycin C induced endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78, CAAT/enhancer-binding protein homologous protein (CHOP) and caspase 4 in a dose-dependent manner. Salubrinal significantly inhibited the mitomycin C-induced cell viability loss and apoptosis, and these effects were accompanied by a reduction in CHOP expression. Our results support the hypothesis that mitomycin C induces human epidural scar fibroblast apoptosis, at least in part, via the endoplasmic reticulum stress pathway.展开更多
基金supported by the National Natural Science Foundation of China,No.81401791,81371968,81672152
文摘Numerous studies have shown that topical application of mitomycin C after surgical decompression effectively reduces scar adhesion. However, the underlying mechanisms remain unclear. In this study, we investigated the effect of mitomycin C on the proliferation and apoptosis of human epidural scar fibroblasts. Human epidural scar fibroblasts were treated with various concentrations of mitomycin C (1, 5, 10, 20, 40 μg/mL) for 12, 24 and 48 hours. Mitomycin C suppressed the growth of these cells in a dose- and time-dependent manner. Mitomycin C upregulated the expression levels of Fas, DR4, DR5, cleaved caspase-8/9, Bax, Bim and cleaved caspase-3 proteins, and it downregulated Bcl-2 and Bcl-xL expression. In addition, inhibitors of caspase-8 and caspase-9 (Z-IETD-FMK and Z-LEHD-FMK, respectively) did not fully inhibit mitomycin C-induced apoptosis. Furthermore, mitomycin C induced endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78, CAAT/enhancer-binding protein homologous protein (CHOP) and caspase 4 in a dose-dependent manner. Salubrinal significantly inhibited the mitomycin C-induced cell viability loss and apoptosis, and these effects were accompanied by a reduction in CHOP expression. Our results support the hypothesis that mitomycin C induces human epidural scar fibroblast apoptosis, at least in part, via the endoplasmic reticulum stress pathway.