期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
求解复杂多目标优化问题MOEA/D-GEP算法 被引量:9
1
作者 张冬梅 龚小胜 +1 位作者 戴光明 彭雷 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期33-36,共4页
针对复杂多目标优化问题,提出一种基于演化建模的MOEA/D(基于分解的多目标遗传算法)求解算法(MOEA/D-GEP).该算法利用MOEA/D算法思想分解多目标优化问题,对分解后得到的可行解用基于模拟退火的GEP算法建模,从中选取预测值较好的点进入... 针对复杂多目标优化问题,提出一种基于演化建模的MOEA/D(基于分解的多目标遗传算法)求解算法(MOEA/D-GEP).该算法利用MOEA/D算法思想分解多目标优化问题,对分解后得到的可行解用基于模拟退火的GEP算法建模,从中选取预测值较好的点进入下一次真实适应值的计算.采用国际公认的ZDT,DTLZ等测试函数进行实验验证,并与MOEA/D-EGO演化多目标优化算法进行了比较.实验结果表明:该算法在IGD性能指标上有较好的表现,说明将演化建模技术引入MOEA/D算法提高了种群个体分布模型的精度,降低了求解复杂多目标优化问题的计算成本. 展开更多
关键词 复杂多目标优化问题 全局优化算法 基于表达式编程 演化多目标优化 moea/d-GEP
原文传递
基于多目标进化算法混合框架的MOEA/D算法 被引量:7
2
作者 田红军 汪镭 吴启迪 《系统仿真学报》 CAS CSCD 北大核心 2020年第2期201-216,共16页
针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥... 针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥挤熵的种群多样性度量方法;提出了基于简化二次逼近的局部搜索策略,以及针对MOEA/D的种群多样性增强策略。数值实验表明所提算法具有良好性能,可以兼顾算法求解的多样性和收敛性,所提混合框架可有效提升现有多目标进化算法的求解性能。 展开更多
关键词 多目标优化 进化算法 混合框架 moea/d 反馈控制
原文传递
一种基于MOEA/D的组合权重方法 被引量:9
3
作者 程建华 董铭涛 赵琳 《控制与决策》 EI CSCD 北大核心 2021年第12期3056-3062,共7页
为了准确地求解组合权重的组合系数,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)思想引入评估领域,提出一种基于MOEA/D的组合权重方法.通常,利用加权和法将组合权重模型转化为... 为了准确地求解组合权重的组合系数,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)思想引入评估领域,提出一种基于MOEA/D的组合权重方法.通常,利用加权和法将组合权重模型转化为单目标模型时,模型加权系数难以准确确定.对此,引入MOEA/D算法的分解思想,将组合权重模型转化为多个单目标子模型.MOEA/D算法仅适用于无约束优化问题,而较为常用的惩罚函数法难以表达进化初期无可行解的情况,因而提出改进自适应惩罚函数(improved adaptive penalty function,IAPF),将组合权重模型转化为无约束优化模型.应用所提出方法与其他方法进行仿真实验,实验结果表明,所提出算法具有有效性. 展开更多
关键词 组合权重 多目标优化 约束 moea/d 自适应惩罚函数
原文传递
采用MOEA/D算法的含风电系统环境经济调度 被引量:2
4
作者 朱永胜 王杰 《郑州大学学报(工学版)》 CAS 北大核心 2014年第4期96-100,共5页
建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操... 建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操作来改善算法的性能并保持解的多样性,以获得理想的Pareto最优前沿.通过仿真计算,并与其他优化算法进行对比分析,验证了MOEA/D算法解决含风电EED问题的可行性和有效性. 展开更多
关键词 风电 环境经济调度 多目标进化算法 moea d PARETO最优前沿
在线阅读 下载PDF
基于自适应进化策略的MOEA/D算法 被引量:7
5
作者 耿焕同 周山胜 +1 位作者 韩伟民 周利发 《计算机工程与设计》 北大核心 2019年第4期1106-1113,共8页
针对MOEA/D算法单纯使用差分进化策略造成局部搜索能力弱、寻优精度低等问题,提出一种基于自适应进化策略的MOEA/D算法(MOEA/D-EA)。利用种群邻域更新信息构造进化状态判断机制,判断子问题的进化潜能和种群的进化状态;将子问题的进化潜... 针对MOEA/D算法单纯使用差分进化策略造成局部搜索能力弱、寻优精度低等问题,提出一种基于自适应进化策略的MOEA/D算法(MOEA/D-EA)。利用种群邻域更新信息构造进化状态判断机制,判断子问题的进化潜能和种群的进化状态;将子问题的进化潜能正反馈到反向学习模型,形成自适应的反向学习策略(AOBL);根据种群的进化状态选择不同的进化策略,以均衡算法的全局搜索与局部寻优能力。实验结果表明,该算法在收敛性、分布性和稳定性等方面均优于或部分优于其它对比算法。 展开更多
关键词 moea/d算法 进化潜能判断 反向学习 自适应进化策略 多目标优化算法
在线阅读 下载PDF
基于邻域和变异算子组合优化的MOEA/D算法 被引量:6
6
作者 刘璐 郑力明 《计算机工程》 CAS CSCD 北大核心 2017年第3期232-240,共9页
考虑到在基于分解的多目标进化算法(MOEA/D)中,邻域大小与变异算子类型对算法进化过程中的探索模式有不同的影响,提出优化的MOEA/D算法。4种不同大小的邻域范围和4个特性不同的变异策略两两组合构成候选池,利用负反馈原则,在进化过程中... 考虑到在基于分解的多目标进化算法(MOEA/D)中,邻域大小与变异算子类型对算法进化过程中的探索模式有不同的影响,提出优化的MOEA/D算法。4种不同大小的邻域范围和4个特性不同的变异策略两两组合构成候选池,利用负反馈原则,在进化过程中以较高概率从候选池中选择表现更优的组合。实验结果表明,该算法鲁棒性较强,在保证收敛性的同时具有较好的多样性。 展开更多
关键词 邻域范围 变异算子类型 候选池 基于分解的多目标进化算法 多目标优化
在线阅读 下载PDF
MOEA/D聚合函数的二次泛化及其优化性能分析 被引量:2
7
作者 周怡璐 王振友 +1 位作者 李叶紫 李锋 《广东工业大学学报》 CAS 2018年第4期37-44,共8页
基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)是多目标优化算法的一个重要分支,多目标优化的关键问题是如何在算法的收敛性和散布性之间达到良好的平衡.目前主流算法的聚合函数存... 基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)是多目标优化算法的一个重要分支,多目标优化的关键问题是如何在算法的收敛性和散布性之间达到良好的平衡.目前主流算法的聚合函数存在着不同的优缺点,尤其是当使用切比雪夫方法选择个体时,经常出现个体偏离权重现象,个体和权重间得不到很好的粘合.本文基于此提出了一种新的聚合函数方法,提高了MOEA/D的性能.该聚合函数的函数形式为二次函数,种群个体在该函数下的等高线是一条二次曲线(本文称双曲线函数方法,Hyperbola Function Method,HYB),是对目前存在的聚合函数的一种泛化形式.该HYB方法相比PBI(Penalty-based Boundary Intersection)方法更强调收敛性,能更容易地在收敛性散布性之间达到平衡.本文测试了MOKP问题及DTLZ系列等测试函数,并与其他算法进行了实验对比,结果显示HYB方法更稳定有效且种群在收敛速度上有一定的提高. 展开更多
关键词 多目标优化 基于分解的多目标进化算法 聚合函数
在线阅读 下载PDF
超参数自适应的MOEA/D-DE算法在翼型气动隐身优化中的应用 被引量:2
8
作者 王培君 夏露 +1 位作者 栾伟达 陈会强 《航空工程进展》 CSCD 2023年第3期50-60,共11页
MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数... MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数拥有自适应能力,得到超参数自适应的MOEA/D-DE算法——MOEA/D-DEAH算法;对MOEA/D-DEAH算法、不同超参数设置的MOEA/D-DE算法和NSGAⅡ算法进行函数测试和翼型气动隐身优化算例对比。结果表明:MOEA/D-DEAH算法性能良好,具有较强的鲁棒性,气动隐身优化效果也比其他算法更好。 展开更多
关键词 多目标优化算法 基于分解的多目标优化算法(moea/d) 超参数 灵敏度分析 气动隐身优化 差分进化算子
在线阅读 下载PDF
Improved MOEA/D for Dynamic Weapon-Target Assignment Problem 被引量:7
9
作者 Ying Zhang Rennong Yang +1 位作者 Jialiang Zuo Xiaoning Jing 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期121-128,共8页
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base... Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment. 展开更多
关键词 multi-objective optimization(MOP) dynamic weapon-target assignment(dWTA) multi-objective evolutionary algorithm based on decomposition(moea/d) tabu search
在线阅读 下载PDF
基于MOEA/D算法的起重船压载水调配优化
10
作者 周佳 宋磊 《中国舰船研究》 CSCD 北大核心 2021年第4期155-163,共9页
[目的]为提高起重船压载水调配效率,降低调载过程能耗,提出基于分解技术的多目标进化算法(MOEA/D)的起重船压载水调配优化方法。[方法]以各压载水舱调配后的水量为决策变量,以压载水总调配量最小为优化目标,引入浮态等方面的约束,建立... [目的]为提高起重船压载水调配效率,降低调载过程能耗,提出基于分解技术的多目标进化算法(MOEA/D)的起重船压载水调配优化方法。[方法]以各压载水舱调配后的水量为决策变量,以压载水总调配量最小为优化目标,引入浮态等方面的约束,建立起重船压载水调配优化的数学模型;针对因决策变量维数高所引起的求解速度慢和求解质量差的问题,提出调载水舱自适应选择方法,以减少参与调载的水舱数量;针对约束条件处理复杂的问题,将单目标优化转化为多目标优化问题,然后应用MOEA/D算法,从Pareto解集中优选得到起重船压载水调配的最优方案。[结果]对某起重船吊机回转过程的压载水调配实例计算结果显示,基于MOEA/D的算法较NSGA-Ⅱ算法和遗传算法(GA)在满足浮态容差的条件下,参与调载的舱室数量减少了27%,调载水量分别减少了24%和38%,验证了MOEA/D算法的可行性和有效性。[结论]所提的基于MOEA/D的方法可为研究起重船压载水调配优化问题提供一种新的解决思路,能得到较优的压载水调配方案,具有一定的工程应用价值。 展开更多
关键词 起重船 压载水调配 自适应选择 多目标优化 基于分解技术的多目标进化算法
在线阅读 下载PDF
A Review of the Evolution of Multi-Objective Evolutionary Algorithms
11
作者 Thomas Hanne Mohammad Jahani Moghaddam 《Computers, Materials & Continua》 2025年第12期4203-4236,共34页
Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review exp... Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review explores the historical development of MOEAs,beginning with foundational concepts in multi-objective optimization,basic types of MOEAs,and the evolution of Pareto-based selection and niching methods.Further advancements,including decom-position-based approaches and hybrid algorithms,are discussed.Applications are analyzed in established domains such as engineering and economics,as well as in emerging fields like advanced analytics and machine learning.The significance of MOEAs in addressing real-world problems is emphasized,highlighting their role in facilitating informed decision-making.Finally,the development trajectory of MOEAs is compared with evolutionary processes,offering insights into their progress and future potential. 展开更多
关键词 multi-objective optimization evolutionary algorithms Pareto-based selection decomposition-based methods advanced analytics
在线阅读 下载PDF
MOQPSO/D算法求解不确定目标分配问题 被引量:2
12
作者 徐浩 董献洲 《火力与指挥控制》 CSCD 北大核心 2021年第12期94-99,共6页
为了增强不确定目标分配对战场态势变化的适应性,提出了一种基于分解的多目标量子行为粒子群算法(MOQPSO/D)的不确定目标分配方法。基于模糊多目标规划方法建立了不确定目标分配模型。以MOEA/D为算法框架,以QPSO算法为寻优手段提出了一... 为了增强不确定目标分配对战场态势变化的适应性,提出了一种基于分解的多目标量子行为粒子群算法(MOQPSO/D)的不确定目标分配方法。基于模糊多目标规划方法建立了不确定目标分配模型。以MOEA/D为算法框架,以QPSO算法为寻优手段提出了一种MOQPSO/D算法。通过粒子编码和非法粒子调整,将MOQPSO/D算法成功应用于求解目标分配模型。仿真结果表明:采用多目标优化方法能有效增强不确定目标分配对战场态势变化的适应性;MOQPSO/D算法在求解目标分配模型时要明显优于MOEA/D及MOEA/D-CD算法。 展开更多
关键词 量子行为粒子群算法 目标分配 不确定 基于分解的多目标进化算法
在线阅读 下载PDF
基于自适应多目标进化CNN的图像分割方法 被引量:8
13
作者 王维 王显鹏 宋相满 《控制与决策》 EI CSCD 北大核心 2024年第4期1185-1193,共9页
卷积神经网络已经成为强大的分割模型,但通常为手动设计,这需要大量时间并且可能导致庞大而复杂的网络.人们对自动设计能够准确分割特定领域图像的高效网络架构越来越感兴趣,然而大部分方法或者没有考虑构建更加灵活的网络架构,或者没... 卷积神经网络已经成为强大的分割模型,但通常为手动设计,这需要大量时间并且可能导致庞大而复杂的网络.人们对自动设计能够准确分割特定领域图像的高效网络架构越来越感兴趣,然而大部分方法或者没有考虑构建更加灵活的网络架构,或者没有考虑多个目标优化模型.鉴于此,提出一种称为AdaMo-ECNAS的自适应多目标进化卷积神经架构搜索算法,用于特定领域的图像分割,在进化过程中考虑多个性能指标并通过优化模型的多目标适应特定的数据集.AdaMo-ECNAS可以构建灵活多变的预测分割模型,其网络架构和超参数通过基于多目标进化的算法找到,算法基于自适应PBI实现3个目标进化问题,即提升预测分割的F1-score、最大限度减少计算成本以及最大限度挖掘额外训练潜能.将AdaMo-ECNAS在两个真实数据集上进行评估,结果表明所提出方法与其他先进算法相比具有较高的竞争性,甚至是超越的. 展开更多
关键词 卷积神经网络 神经架构搜索 多目标优化问题 基于分解的多目标进化算法 自适应 图像分割
原文传递
采用基于分解的多目标进化算法的电力环境经济调度 被引量:31
14
作者 朱永胜 王杰 +1 位作者 瞿博阳 P.N.Suganthan 《电网技术》 EI CSCD 北大核心 2014年第6期1577-1584,共8页
为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D... 为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D的多目标环境经济调度算法。该算法首先采用Tchebycheff法将整个EED Pareto最优前沿的逼近问题分解为一定数量的单目标优化子问题,然后利用差分进化同时求解这些子问题,并在算法中加入约束处理及归一化操作,以获得最优的带约束EED问题的调度方案。最后,应用模糊集理论为决策者提供最优折中解。对IEEE 30节点测试系统进行仿真计算,并与其它智能优化算法的调度方案对比。结果表明,该算法有效可行,且具有很好的收敛速度和求解精度。 展开更多
关键词 环境经济调度 多目标进化算法 moea d PARETO最优前沿
原文传递
进化高维多目标优化算法研究综述 被引量:56
15
作者 刘建昌 李飞 +1 位作者 王洪海 李田军 《控制与决策》 EI CSCD 北大核心 2018年第5期879-887,共9页
首先针对常规多目标优化算法求解高维多目标优化时面临的选择压力衰减问题进行论述;然后针对该问题,按照选择机制的不同详细介绍基于Pareto支配、基于分解策略和基于性能评价指标的典型高维多目标优化算法,并分析各自的优缺点;接着立足... 首先针对常规多目标优化算法求解高维多目标优化时面临的选择压力衰减问题进行论述;然后针对该问题,按照选择机制的不同详细介绍基于Pareto支配、基于分解策略和基于性能评价指标的典型高维多目标优化算法,并分析各自的优缺点;接着立足于一种全新的性能评价指标—–R2指标,给出R2指标的具体定义,介绍基于R2指标的高维多目标优化算法,分析此类算法的本质,并按照R2指标的4个关键组成部分进行综述;最后,发掘其存在的潜在问题以及未来发展空间. 展开更多
关键词 高维多目标优化问题 进化算法 PARETO支配 moea/d R2指标
原文传递
一种求解多目标优化问题的进化算法混合框架 被引量:14
16
作者 田红军 汪镭 吴启迪 《控制与决策》 EI CSCD 北大核心 2017年第10期1729-1738,共10页
为了提高多目标优化算法的求解性能,提出一种启发式的基于种群的全局搜索与局部搜索相结合的多目标进化算法混合框架.该框架采用模块化、系统化的设计思想,不同模块可以采用不同策略构成不同的算法.采用经典的改进非支配排序遗传算法(NS... 为了提高多目标优化算法的求解性能,提出一种启发式的基于种群的全局搜索与局部搜索相结合的多目标进化算法混合框架.该框架采用模块化、系统化的设计思想,不同模块可以采用不同策略构成不同的算法.采用经典的改进非支配排序遗传算法(NSGA-Ⅱ)和基于分解的多目标进化算法(MOEA/D)作为进化算法的模块算法来验证所提混合框架的有效性.数值实验表明,所提混合框架具有良好性能,可以兼顾算法求解的多样性和收敛性,有效提升现有多目标进化算法的求解性能. 展开更多
关键词 多目标优化 进化算法 混合框架 NSGA-Ⅱ moea/d
原文传递
一种基于混合高斯模型的多目标进化算法 被引量:30
17
作者 周爱民 张青富 张桂戌 《软件学报》 EI CSCD 北大核心 2014年第5期913-928,共16页
目前,大多数多目标进化算法采用为单目标优化所设计的重组算子.通过证明或实验分析了几个典型的单目标优化重组算子并不适合某些多目标优化问题.提出了基于分解技术和混合高斯模型的多目标优化算法(multiobjective evolutionary algorit... 目前,大多数多目标进化算法采用为单目标优化所设计的重组算子.通过证明或实验分析了几个典型的单目标优化重组算子并不适合某些多目标优化问题.提出了基于分解技术和混合高斯模型的多目标优化算法(multiobjective evolutionary algorithm based on decomposition and mixture Gaussian models,简称MOEA/D-MG).该算法首先采用一个改进的混合高斯模型对群体建模并采样产生新个体,然后利用一个贪婪策略来更新群体.针对具有复杂Pareto前沿的多目标优化问题的测试结果表明,对给定的大多数测试题,该算法具有良好的效果. 展开更多
关键词 多目标优化 进化算法 moea d 混合高斯概率模型
在线阅读 下载PDF
基于进化多目标优化的微服务组合部署与调度策略 被引量:10
18
作者 马武彬 王锐 +3 位作者 王威超 吴亚辉 邓苏 黄宏斌 《系统工程与电子技术》 EI CSCD 北大核心 2020年第1期90-100,共11页
面向微服务实例在不同资源中心的组合部署与调度问题,构建微服务组合部署与调度最优化问题模型。以资源服务中心计算及存储资源利用率、负载均衡率和微服务实际使用率等为优化目标,以服务的完备性、资源与存储资源总量和微服务序列总量... 面向微服务实例在不同资源中心的组合部署与调度问题,构建微服务组合部署与调度最优化问题模型。以资源服务中心计算及存储资源利用率、负载均衡率和微服务实际使用率等为优化目标,以服务的完备性、资源与存储资源总量和微服务序列总量为约束条件,提出基于进化多目标优化算法(NSGA-Ⅲ,MOEA/D)求解方法,寻求微服务序列在不同资源中心的实例组合部署与调度策略。通过真实数据集实验对比,在全部满足用户服务请求的约束下,该策略比传统微服务组合调度策略的计算、存储资源平均空闲率和微服务实际空闲率要分别低13.21%、5.2%和16.67%。 展开更多
关键词 微服务 服务组合优化 基于参考点非支配排序遗传算法 基于分解的多目标进化算法 多目标优化
在线阅读 下载PDF
基于分解的多目标进化算法在工程优化中的应用 被引量:5
19
作者 张春江 TAN Kay Chen +1 位作者 高亮 吴擎 《郑州大学学报(工学版)》 CAS 北大核心 2015年第6期38-46,共9页
将基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应ε约束差分进化... 将基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应ε约束差分进化算法(εConstrained Differential Evolution,εDE)寻找各个目标在Pareto前沿上的最大值和最小值,利用这些值对各目标进行归一化处理;然后,用MOEA/D进行求解,并在算法中加入了自适应ε约束处理技术;最后,采用一个标准测试问题和一个焊接梁设计优化问题对该算法进行测试,并与其他两种归一化方法进行了比较.根据提出的方法,MOEA/D能对Pareto前沿的一端进行集中优化,因而能处理一些Pareto前沿两端难以优化的问题. 展开更多
关键词 多目标进化算法 moea/d 归一化 工程优化 差分进化 ε约束处理
在线阅读 下载PDF
混合个体选择机制的多目标进化算法 被引量:6
20
作者 陈晓纪 石川 +1 位作者 周爱民 吴斌 《软件学报》 EI CSCD 北大核心 2019年第12期3651-3664,共14页
在多目标进化算法中,如何从后代候选集中选择最优解,显著地影响优化过程.当前,最优解的选择方式主要是基于实际目标值或者代理模型估计目标值.然而,这些选择方式往往是非常耗时或者存在精度差等问题,特别是对于一些实际的复杂优化问题.... 在多目标进化算法中,如何从后代候选集中选择最优解,显著地影响优化过程.当前,最优解的选择方式主要是基于实际目标值或者代理模型估计目标值.然而,这些选择方式往往是非常耗时或者存在精度差等问题,特别是对于一些实际的复杂优化问题.最近,一些研究人员开始利用有监督分类辅助后代选择,但是这些工作难以准备准确的正例和负例样本,或者存在耗时的参数调整等问题.为了解决这些问题,提出了一种新颖的融合分类与代理的混合个体选择机制,用于从后代候选集中选择最优解.在每一代优化中,首先利用分类器选择优良解;然后设计了一个轻量级的代理模型用于估计优良解的目标值;最后利用这些目标值对优良解进行排序,并选择最优解作为后代解.基于典型的多目标进化算法MOEA/D,利用混合个体选择机制设计了新的算法框架MOEA/D-CS.与当前流行的基于分解多目标进化算法比较,实验结果表明,所提出的算法取得了最好的性能. 展开更多
关键词 多目标优化 进化算法 后代选择 相似性 moea/d
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部