期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Review of the Evolution of Multi-Objective Evolutionary Algorithms
1
作者 Thomas Hanne Mohammad Jahani Moghaddam 《Computers, Materials & Continua》 2025年第12期4203-4236,共34页
Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review exp... Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review explores the historical development of MOEAs,beginning with foundational concepts in multi-objective optimization,basic types of MOEAs,and the evolution of Pareto-based selection and niching methods.Further advancements,including decom-position-based approaches and hybrid algorithms,are discussed.Applications are analyzed in established domains such as engineering and economics,as well as in emerging fields like advanced analytics and machine learning.The significance of MOEAs in addressing real-world problems is emphasized,highlighting their role in facilitating informed decision-making.Finally,the development trajectory of MOEAs is compared with evolutionary processes,offering insights into their progress and future potential. 展开更多
关键词 Multi-objective optimization evolutionary algorithms Pareto-based selection decomposition-based methods advanced analytics
在线阅读 下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
2
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SELF-ADAPTIVE numerical optimization evolutionary al-gorithm stochastic search algorithm.
在线阅读 下载PDF
Enhancing MOEA/D with uniform population initialization,weight vector design and adjustment using uniform design 被引量:2
3
作者 Ying Zhang Rennong Yang +1 位作者 Jialiang Zuo Xiaoning Jing 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第5期1010-1022,共13页
In order to exploit the enhancement of the multi- objective evolutionary algorithm based on decomposition (MOEA/D), we propose an improved algorithm with uniform de- sign (UD), i.e. MOEA/D-UD. Three mechanisms in ... In order to exploit the enhancement of the multi- objective evolutionary algorithm based on decomposition (MOEA/D), we propose an improved algorithm with uniform de- sign (UD), i.e. MOEA/D-UD. Three mechanisms in MOEA/D-UD are modified by introducing an experimental design method called UD. To fully employ the information contained in the domain of the multi-objective problem, we apply UD to initialize a uniformly scattered population. Then, motivated by the analysis of the re- lationship between weight vectors and optimal solutions of scalar subproblems in the study of MOEND with adaptive weight ad- justment (MOEA/D-AWA), a new weight vector design method based on UD is introduced. To distinguish real sparse regions from pseudo sparse regions, i.e. discontinuous regions, of the complex Pareto front, the weight vector adjustment strategy in MOEMD-UD adequately utilizes the information from neighbors of individuals. In the experimental study, we compare MOEA/D-UD with three outstanding algorithms, namely MOEA/D with the dif- ferential evolution operator (MOEA/D-DE), MOEA/D-AWA and the nondominated sorting genetic algorithm II (NSGA-II) on nineteen test instances. The experimental results show that MOEA/D-UD is capable of obtaining a well-converged and well diversified set of solutions within an acceptable execution time. 展开更多
关键词 multi-objective optimization decomposition-based evolutionary algorithm uniform design (UD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部