期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Decomposition pathway and stabilization of ether-based electrolytes in the discharge process of Li-O_(2) battery 被引量:1
1
作者 Xiao Liu Xiaosheng Song +5 位作者 Qi Zhang Xuebing Zhu Qing Han Zewen Liu Peng Zhang Yong Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期516-523,I0014,共9页
Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the de... Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the degradation chemistry of ether-based solvent induced by reactive oxygen species is significant importance toward selection of stable electrolytes for LOBs.Herein,we demonstrate that a great amount of H_(2) gas evolves on the Li anode during the long-term discharge process of LOBs,which is due to the electrolyte decomposition at the oxygen cathode.By coupling with in-situ and ex-situ characterization techniques,it is demonstrated that O_(2)^(-) induces the H-abstraction of tetraethylene glycol dimethyl ether(TEGDME) to produce a large amount of H_(2)O at cathode,and this H_(2)O migrates to Li anode and produce H_(2) gas.Based on the established experiments and spectra,a possible decomposition pathway of TEGDME caused by O_(2)^(-)at the discharge process is proposed.And moreover,three types of strategies are discussed to inhibit the decomposition of ether-based electrolytes,which should be highly important for the fundamental and technical advancement for LOBs. 展开更多
关键词 Lithium-oxygen batteries Ether-based electrolytes Discharge process decomposition pathway H_(2)O molecule Hydrogen evolution
在线阅读 下载PDF
Theoretical Study of Decomposition Pathways for Rare-gas-containing Compounds HRgX (Rg = He, Ne, Ar, Kr; X = Cl, Br) 被引量:1
2
作者 AI Chun-Zhi SUN Ren-An YAN Jie 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2005年第12期1445-1451,共7页
Eight species, HRgX (Rg = He, Ne, Ar, Kr; X = Cl, Br), are predicted to have bending transition states at B3PW91/AUG-cc-PVTZ level, leading to 2-body decomposition pathway like H-Rg-X→Rg+HX. The reaction path has ... Eight species, HRgX (Rg = He, Ne, Ar, Kr; X = Cl, Br), are predicted to have bending transition states at B3PW91/AUG-cc-PVTZ level, leading to 2-body decomposition pathway like H-Rg-X→Rg+HX. The reaction path has been obtained with Intricate Reaction Coordinates (IRC) method on identical theoretical level. Additionally, the linear transition states of HArCl, HArBr, HKrCl and HKrBr were obtained at MP2/6-311 ++G (2d, 2p) level, resulting in 3-body dissociation channel as H-Rg-X→H + Rg+ X. 展开更多
关键词 decomposition pathway transition state IRC energy barrier
在线阅读 下载PDF
Advancements in energetic metal-organic frameworks, alkali and alkaline earth metal salts, and transition metal complexes: Predictive models for detonation velocity, heat, and pressure
3
作者 Mohammad Hossein Keshavarz Nasser Hassanzadeh Mohammad Jafari 《Defence Technology(防务技术)》 2025年第7期96-112,共17页
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu... Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models. 展开更多
关键词 Metal-organic framework Alkali and alkaline earth metal salt Transition metal complexe Detonation performance decomposition pathway Predictive reliability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部