Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc es...Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc esses. During the machining process, cutting fluid is one of the main roots of e nvironmental pollution. And how to make an optimal selection for cutting fluid f or GM is an important path to reduce the environmental pollution. The objective factors of decision-making problems in the traditional selection of cutting flu id are usually two: quality and cost. But from the viewpoint of GM, environmenta l impact (E) should be considered together. In this paper, a multi-object d ecision-making model of cutting fluid selection for GM is put forward, in which the objects of Quality (Q), Cost(C) and Environmental impact (E) are considered together. In this model, E means to minimize the environmental impact, Q means to maximize the quality and C means to minimize the cost. Each objective is anal yzed in detail too. A case study on a decision-making problem of cutting fluid selection in a gear hobbing process is analyzed, and the result shows the model is practical.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularl...Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements...Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability.展开更多
Flood is one of the major challenges facing human societies.Adapting to future flood risks involves deep uncertainty,especially when long-term projections of climate change are considered.This study proposed a Two-sta...Flood is one of the major challenges facing human societies.Adapting to future flood risks involves deep uncertainty,especially when long-term projections of climate change are considered.This study proposed a Two-stage Robust Decision Making(2S-RDM)framework to help devise flexible and robust strategies capable of addressing the inherent deep uncertainty associated with managing flood risks.Taking the Yangtze River Basin in China as a case study,we simulated flood risks across∼0.6 million scenarios until 2050.This analysis considered four types of uncertain factors,i.e.,future climate change,socio-economic growth,industrial structure transformation,and population aging.We then examined the effectiveness of four adaptation measures and their combinations,i.e.building elevation,tunnel construction,people relocation,and river basin conservation.Our projections show that without immediate adaptation,an estimated 0.9 to 27.3 million people will be impacted by floods until 2050,accompanied with$33.8 to$198.5 billion economic losses in the entire basin.When defining the goal as limiting the affected population<0.05%and ensuring economic losses<0.02%,we identified 24 global robust strategies capable of meeting this criterion in>80%of scenarios.Then,we compared the 24 global robust strategies regarding their relative costs and performances in each of the future scenario pools.The final recommended solutions are hybrid strategies that integrate engineering-based measures with‘soft’adaptation options(e.g.Elevation++,Tunnel++,and Relocation).This study provides tools to design flood adaptation strategies not only robust across diverse scenarios but also flexible for decision-makers to customize and refine their strategies based on specific needs.展开更多
Autonomy, a key property associated with the agent, is an important topic in the current research of the agent theory. Although no definition of the agent autonomy is universally accepted, an important aspect of the a...Autonomy, a key property associated with the agent, is an important topic in the current research of the agent theory. Although no definition of the agent autonomy is universally accepted, an important aspect of the agent autonomy is the decision-making capability of the agents. This paper investigates the autonomy of the agent, presents a framework for autonomous agent and discusses its decision-making process. Started with introducing a language for representing autonomous agent, a framework is proposed for modeling autonomous agent based on a BDI model and the situation calculus. Finally, a kind of decision-making process of the autonomous agent is presented.展开更多
This research looked to improve the daylighting performance of a shading device as a window component.The paper describes the development of the decision-making framework(DMF)for the selection and design of shading de...This research looked to improve the daylighting performance of a shading device as a window component.The paper describes the development of the decision-making framework(DMF)for the selection and design of shading devices based on daylighting.The DMF presents the process of analysis of the shading devices’daylighting performance in the selection of existing shading devices and in the design of new shading devices.The research determined the shading device daylighting performance measures(such as illuminance and daylight autonomy)as well as the variables that influence daylight performance.Interactions among the variables and the effects of these interactions on the shading device daylighting performance were explained and quantified in the DMF.The DMF also included ways of present-ing the results of testing the shading devices and the process of making the decision.A case study for three blind systems was performed to determine if the DMF provides a concept for the analysis of the daylighting performance of shading devices and for making decisions about the design/selection of the shading device.Computer simulation was used to calculate the illuminance levels and the daylight autonomies(DAs)as a result of the application of these blinds.The values of the DAs are compared for three blind systems to select the most appropriate sys-tem to be applied on a proposed building.The DMF based on daylighting can help building designers to select the most suitable shading device based on its daylighting performance,and can help shading device manufacturers in designing new shading devices with improved daylighting performance.FIGURE 2.Simplified DMF diagram.展开更多
Design frequently involves making tradeoffs to obtain the“optimal”solution to a design problem,often using intuition or past experience as a guide.Since vegetated roofing is a relatively complex and comparatively ne...Design frequently involves making tradeoffs to obtain the“optimal”solution to a design problem,often using intuition or past experience as a guide.Since vegetated roofing is a relatively complex and comparatively new technology to many practitioners,a rational,explicit method to help organize and rank the tradeoffs made during the design process is needed.This research comprises the creation of a framework diagramming the decision process involved in the selection of vegetated roofi ng systems.Through literature review,case studies and interviews with experts,the available knowledge is captured and organized to determine the critical parameters affecting design decisions.Six important evaluative categories are identifi ed and parameters within these categories are addressed in the context of a decision support system for green roof designers.A summation of the total importance of the advantages represented by each alternative is used to determine the most feasible green roof system for a particular project.The framework is demonstrated and compared with green roof designers’decision-making processes and conclusions are drawn regarding its effectiveness.展开更多
Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the...Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the mission decision-making. Therefore, in this paper, we develop a mission decision-making method of multi-aircraft cooperatively attacking multi-target based on situational assessment. We have studied the situational assessment mathematical model based on the Dempster-Shafer(D-S) evidence theory and the mission decision-making mathematical model based on the game theory. The proposed mission decision-making method of antagonized airfight is validated by some simulation examples of a swarm of unmanned combat aerial vehicles(UCAVs)that carry out the mission of the suppressing of enemy air defenses(SEAD).展开更多
The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approac...The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2.展开更多
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati...The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.展开更多
To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforce...To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpfu...BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.展开更多
Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues le...Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues leading to those decisions.Methods Semi-structured personal interviews were used to collect data.Seven family members of patients with malignant brain tumors were selected to participate in the study by purposive sampling method from June to August 2022 in the Patient Family Association of Japan.Responses were content analyzed to explore the relationship between the content of decisions regarding“treatment policies”and“daily care”and the cues influencing those decisions.Semi-structured interviews were analyzed by using thematic analysis.Results The contents of proxy decisions regarding“treatment policies”included implementation,interruption,and termination of initial treatments,free medical treatments,use of respirators,and end-of-life sedation and included six cues:treatment policies suggested by the primary physician,information and knowledge about the disease and treatment obtained by the family from limited resources,perceived life threat from symptom worsening,words and reactions from the patient regarding treatment,patient’s personality and way of life inferred from their treatment preferences,family’s thoughts and values hoping for better treatment for the patient.Decisions for“daily care”included meal content and methods,excretion,mobility,maintaining cleanliness,rehabilitation,continuation or resignation from work,treatment settings(outpatient or inpatient),and ways to spend time outside and included seven cues:words and thoughts from the patient about their way of life,patient’s reactions and life history inferred from their preferred way of living,things the patient can do to maintain daily life and roles,awareness of the increasing inability to do things in daily life,family’s underlying thoughts and values about how to spend the remaining time,approval from family members regarding the care setting,advice from medical professionals on living at home.Conclusions For“treatment policies,”guidelines from medical professionals were a key cue,while for“daily care,”the small signs from the patients in their daily lives served as cues for proxy decision-making.This may be due to the lack of information available to families and the limited time available for discussion with the patient.Families of patients with malignant brain tumors repeatedly use multiple cues to make proxy decision-making under high uncertainty.Therefore,nurses supporting proxy decision-making should assess the family’s situation and provide cues that facilitate informed and confident decisions.展开更多
Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studie...Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studies on collective behavior in small animals such as fish and insects are well-established,similar research on large wild animals remains challenging due to the limited availability of sufficient and systematic field data.Here,we aimed to explore the collective decision-making pattern and its sexual difference for the dimorphic Tibetan antelopes Pantholops hodgsonii(chiru)in Xizang Autonomous Region,China,by analyzing individual leadership distribution,as well as the joining process,considering factors such as calving stages and joining ranks.The distinct correlations of decision participants’ratio with group size and decision duration underscore the trade-off between accuracy and speed in decision-making.Male antelopes display a more democratic decision-making pattern,while females exhibit more prompt responses after calving at an early stage.This study uncovers a partially shared decision-making strategy among Tibetan antelopes,suggesting flexible self-organization in group decision processes aligned with animal life cycle progression.展开更多
BACKGROUND Mesalamine is the recommended first-line treatment for inducing and maintaining remission in mild-to-moderate ulcerative colitis(UC).However,adherence in real-world settings is frequently suboptimal.Encoura...BACKGROUND Mesalamine is the recommended first-line treatment for inducing and maintaining remission in mild-to-moderate ulcerative colitis(UC).However,adherence in real-world settings is frequently suboptimal.Encouraging collaborative patient-provider relationships may foster better adherence and patient outcomes.AIM To quantify the association between patient participation in treatment decisionmaking and adherence to oral mesalamine in UC.METHODS We conducted a 12-month,prospective,non-interventional cohort study at 113 gastroenterology practices in Germany.Eligible patients were aged≥18 years,had a confirmed UC diagnosis,had no prior mesalamine treatment,and provided informed consent.At the first visit,we collected data on demographics,clinical characteristics,patient preference for mesalamine formulation(tablets or granules),and disease knowledge.Self-reported adherence and disease activity were assessed at all visits.Correlation analyses and logistic regression were used to examine associations between adherence and various factors.RESULTS Of the 605 consecutively screened patients,520 were included in the study.The median age was 41 years(range:18-91),with a male-to-female ratio of 1.1:1.0.Approximately 75%of patients reported good adherence at each study visit.In correlation analyses,patient participation in treatment decision-making was significantly associated with better adherence across all visits(P=0.04).In the regression analysis at 12 months,this association was evident among patients who both preferred and received prolonged-release mesalamine granules(odds ratio=2.73,P=0.001).Patients reporting good adherence also experienced significant improvements in disease activity over 12 months(P<0.001).CONCLUSION Facilitating patient participation in treatment decisions and accommodating medication preferences may improve adherence to mesalamine.This may require additional effort but has the potential to improve long-term management of UC.展开更多
Accurately determining when and what to remanufacture is essential for maximizing the lifecycle value of industrial equipment.However,existing approaches face three significant limitations:(1)reliance on predefined ma...Accurately determining when and what to remanufacture is essential for maximizing the lifecycle value of industrial equipment.However,existing approaches face three significant limitations:(1)reliance on predefined mathematical models that often fail to capture equipment-specific degradation,(2)offline optimization methods that assume access to future data,and(3)the absence of component-level guidance.To address these challenges,we propose a data-driven framework for component-level decision-making.The framework leverages streaming sensor data to predict the remaining useful life(RUL)without relying on mathematical models,employs an online optimization algorithm suitable for practical settings,and,through remanufacturing simulations,provides guidance on which components should be replaced.In a case study on gas-insulated switchgear,the proposed framework achieved RUL prediction performance comparable to an oracle model in an online setting without relying on predefined mathematical models.Furthermore,by employing online optimization,it determined a remanufacturing timing close to the global optimum using only past and current data.In addition,unlike previous studies,the framework enables component-level decision-making,allowing for more detailed and actionable remanufacturing guidance in practical applications.展开更多
文摘Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc esses. During the machining process, cutting fluid is one of the main roots of e nvironmental pollution. And how to make an optimal selection for cutting fluid f or GM is an important path to reduce the environmental pollution. The objective factors of decision-making problems in the traditional selection of cutting flu id are usually two: quality and cost. But from the viewpoint of GM, environmenta l impact (E) should be considered together. In this paper, a multi-object d ecision-making model of cutting fluid selection for GM is put forward, in which the objects of Quality (Q), Cost(C) and Environmental impact (E) are considered together. In this model, E means to minimize the environmental impact, Q means to maximize the quality and C means to minimize the cost. Each objective is anal yzed in detail too. A case study on a decision-making problem of cutting fluid selection in a gear hobbing process is analyzed, and the result shows the model is practical.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
文摘Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
基金Supported by National Key R&D Program of China(Grant No.2022YFB2503203)National Natural Science Foundation of China(Grant No.U1964206).
文摘Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability.
基金supported by The National Natural Science Foundation of China(72304136,71921003,72234003,72222012)National Postdoctoral Program for Innovative Talents(BX20230159)Jiangsu R&D Special Fund for Carbon Peaking and Carbon Neutrality(BK20220014).
文摘Flood is one of the major challenges facing human societies.Adapting to future flood risks involves deep uncertainty,especially when long-term projections of climate change are considered.This study proposed a Two-stage Robust Decision Making(2S-RDM)framework to help devise flexible and robust strategies capable of addressing the inherent deep uncertainty associated with managing flood risks.Taking the Yangtze River Basin in China as a case study,we simulated flood risks across∼0.6 million scenarios until 2050.This analysis considered four types of uncertain factors,i.e.,future climate change,socio-economic growth,industrial structure transformation,and population aging.We then examined the effectiveness of four adaptation measures and their combinations,i.e.building elevation,tunnel construction,people relocation,and river basin conservation.Our projections show that without immediate adaptation,an estimated 0.9 to 27.3 million people will be impacted by floods until 2050,accompanied with$33.8 to$198.5 billion economic losses in the entire basin.When defining the goal as limiting the affected population<0.05%and ensuring economic losses<0.02%,we identified 24 global robust strategies capable of meeting this criterion in>80%of scenarios.Then,we compared the 24 global robust strategies regarding their relative costs and performances in each of the future scenario pools.The final recommended solutions are hybrid strategies that integrate engineering-based measures with‘soft’adaptation options(e.g.Elevation++,Tunnel++,and Relocation).This study provides tools to design flood adaptation strategies not only robust across diverse scenarios but also flexible for decision-makers to customize and refine their strategies based on specific needs.
文摘Autonomy, a key property associated with the agent, is an important topic in the current research of the agent theory. Although no definition of the agent autonomy is universally accepted, an important aspect of the agent autonomy is the decision-making capability of the agents. This paper investigates the autonomy of the agent, presents a framework for autonomous agent and discusses its decision-making process. Started with introducing a language for representing autonomous agent, a framework is proposed for modeling autonomous agent based on a BDI model and the situation calculus. Finally, a kind of decision-making process of the autonomous agent is presented.
文摘This research looked to improve the daylighting performance of a shading device as a window component.The paper describes the development of the decision-making framework(DMF)for the selection and design of shading devices based on daylighting.The DMF presents the process of analysis of the shading devices’daylighting performance in the selection of existing shading devices and in the design of new shading devices.The research determined the shading device daylighting performance measures(such as illuminance and daylight autonomy)as well as the variables that influence daylight performance.Interactions among the variables and the effects of these interactions on the shading device daylighting performance were explained and quantified in the DMF.The DMF also included ways of present-ing the results of testing the shading devices and the process of making the decision.A case study for three blind systems was performed to determine if the DMF provides a concept for the analysis of the daylighting performance of shading devices and for making decisions about the design/selection of the shading device.Computer simulation was used to calculate the illuminance levels and the daylight autonomies(DAs)as a result of the application of these blinds.The values of the DAs are compared for three blind systems to select the most appropriate sys-tem to be applied on a proposed building.The DMF based on daylighting can help building designers to select the most suitable shading device based on its daylighting performance,and can help shading device manufacturers in designing new shading devices with improved daylighting performance.FIGURE 2.Simplified DMF diagram.
文摘Design frequently involves making tradeoffs to obtain the“optimal”solution to a design problem,often using intuition or past experience as a guide.Since vegetated roofing is a relatively complex and comparatively new technology to many practitioners,a rational,explicit method to help organize and rank the tradeoffs made during the design process is needed.This research comprises the creation of a framework diagramming the decision process involved in the selection of vegetated roofi ng systems.Through literature review,case studies and interviews with experts,the available knowledge is captured and organized to determine the critical parameters affecting design decisions.Six important evaluative categories are identifi ed and parameters within these categories are addressed in the context of a decision support system for green roof designers.A summation of the total importance of the advantages represented by each alternative is used to determine the most feasible green roof system for a particular project.The framework is demonstrated and compared with green roof designers’decision-making processes and conclusions are drawn regarding its effectiveness.
基金supported by the Aeronautical Science Foundation of China (No. 05D01002)
文摘Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the mission decision-making. Therefore, in this paper, we develop a mission decision-making method of multi-aircraft cooperatively attacking multi-target based on situational assessment. We have studied the situational assessment mathematical model based on the Dempster-Shafer(D-S) evidence theory and the mission decision-making mathematical model based on the game theory. The proposed mission decision-making method of antagonized airfight is validated by some simulation examples of a swarm of unmanned combat aerial vehicles(UCAVs)that carry out the mission of the suppressing of enemy air defenses(SEAD).
基金supported by the National Natural Science Foundation of China (60874068)
文摘The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2.
文摘The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFE0117100)National Science Foundation of China(Grant No.52102468,52325212)Fundamental Research Funds for the Central Universities。
文摘To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.
文摘Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues leading to those decisions.Methods Semi-structured personal interviews were used to collect data.Seven family members of patients with malignant brain tumors were selected to participate in the study by purposive sampling method from June to August 2022 in the Patient Family Association of Japan.Responses were content analyzed to explore the relationship between the content of decisions regarding“treatment policies”and“daily care”and the cues influencing those decisions.Semi-structured interviews were analyzed by using thematic analysis.Results The contents of proxy decisions regarding“treatment policies”included implementation,interruption,and termination of initial treatments,free medical treatments,use of respirators,and end-of-life sedation and included six cues:treatment policies suggested by the primary physician,information and knowledge about the disease and treatment obtained by the family from limited resources,perceived life threat from symptom worsening,words and reactions from the patient regarding treatment,patient’s personality and way of life inferred from their treatment preferences,family’s thoughts and values hoping for better treatment for the patient.Decisions for“daily care”included meal content and methods,excretion,mobility,maintaining cleanliness,rehabilitation,continuation or resignation from work,treatment settings(outpatient or inpatient),and ways to spend time outside and included seven cues:words and thoughts from the patient about their way of life,patient’s reactions and life history inferred from their preferred way of living,things the patient can do to maintain daily life and roles,awareness of the increasing inability to do things in daily life,family’s underlying thoughts and values about how to spend the remaining time,approval from family members regarding the care setting,advice from medical professionals on living at home.Conclusions For“treatment policies,”guidelines from medical professionals were a key cue,while for“daily care,”the small signs from the patients in their daily lives served as cues for proxy decision-making.This may be due to the lack of information available to families and the limited time available for discussion with the patient.Families of patients with malignant brain tumors repeatedly use multiple cues to make proxy decision-making under high uncertainty.Therefore,nurses supporting proxy decision-making should assess the family’s situation and provide cues that facilitate informed and confident decisions.
基金supported by the National Natural Science Foundation of China(Grant no.32101237)the China Postdoctoral Science Foundation(Grant no.2021M691522)+1 种基金the National Key Research and Development Program(Grant no.2022YFC3202104)the Tibet Major Science and Technology Project(Grant no.XZ201901-GA-06).
文摘Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studies on collective behavior in small animals such as fish and insects are well-established,similar research on large wild animals remains challenging due to the limited availability of sufficient and systematic field data.Here,we aimed to explore the collective decision-making pattern and its sexual difference for the dimorphic Tibetan antelopes Pantholops hodgsonii(chiru)in Xizang Autonomous Region,China,by analyzing individual leadership distribution,as well as the joining process,considering factors such as calving stages and joining ranks.The distinct correlations of decision participants’ratio with group size and decision duration underscore the trade-off between accuracy and speed in decision-making.Male antelopes display a more democratic decision-making pattern,while females exhibit more prompt responses after calving at an early stage.This study uncovers a partially shared decision-making strategy among Tibetan antelopes,suggesting flexible self-organization in group decision processes aligned with animal life cycle progression.
文摘BACKGROUND Mesalamine is the recommended first-line treatment for inducing and maintaining remission in mild-to-moderate ulcerative colitis(UC).However,adherence in real-world settings is frequently suboptimal.Encouraging collaborative patient-provider relationships may foster better adherence and patient outcomes.AIM To quantify the association between patient participation in treatment decisionmaking and adherence to oral mesalamine in UC.METHODS We conducted a 12-month,prospective,non-interventional cohort study at 113 gastroenterology practices in Germany.Eligible patients were aged≥18 years,had a confirmed UC diagnosis,had no prior mesalamine treatment,and provided informed consent.At the first visit,we collected data on demographics,clinical characteristics,patient preference for mesalamine formulation(tablets or granules),and disease knowledge.Self-reported adherence and disease activity were assessed at all visits.Correlation analyses and logistic regression were used to examine associations between adherence and various factors.RESULTS Of the 605 consecutively screened patients,520 were included in the study.The median age was 41 years(range:18-91),with a male-to-female ratio of 1.1:1.0.Approximately 75%of patients reported good adherence at each study visit.In correlation analyses,patient participation in treatment decision-making was significantly associated with better adherence across all visits(P=0.04).In the regression analysis at 12 months,this association was evident among patients who both preferred and received prolonged-release mesalamine granules(odds ratio=2.73,P=0.001).Patients reporting good adherence also experienced significant improvements in disease activity over 12 months(P<0.001).CONCLUSION Facilitating patient participation in treatment decisions and accommodating medication preferences may improve adherence to mesalamine.This may require additional effort but has the potential to improve long-term management of UC.
基金supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government Ministry of Knowledge Economy(No.RS-2023-00244330)the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF RS-2023-00219052RS-2024-00352587)。
文摘Accurately determining when and what to remanufacture is essential for maximizing the lifecycle value of industrial equipment.However,existing approaches face three significant limitations:(1)reliance on predefined mathematical models that often fail to capture equipment-specific degradation,(2)offline optimization methods that assume access to future data,and(3)the absence of component-level guidance.To address these challenges,we propose a data-driven framework for component-level decision-making.The framework leverages streaming sensor data to predict the remaining useful life(RUL)without relying on mathematical models,employs an online optimization algorithm suitable for practical settings,and,through remanufacturing simulations,provides guidance on which components should be replaced.In a case study on gas-insulated switchgear,the proposed framework achieved RUL prediction performance comparable to an oracle model in an online setting without relying on predefined mathematical models.Furthermore,by employing online optimization,it determined a remanufacturing timing close to the global optimum using only past and current data.In addition,unlike previous studies,the framework enables component-level decision-making,allowing for more detailed and actionable remanufacturing guidance in practical applications.