In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli...In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.展开更多
If A: D(A) X→X is a densely defined and closed linear operator, which generates a linear semigroup S (t) in Banach space X. The nonlocal control/ability for the following nonlocal semilinear problems: u' (t...If A: D(A) X→X is a densely defined and closed linear operator, which generates a linear semigroup S (t) in Banach space X. The nonlocal control/ability for the following nonlocal semilinear problems: u' (t) = Au (t) + Bx( t) + f( t, u(t) ), 0≤t ≤ T with nonlocal initial condition u(0) = u0 + g(u) is discussed in Banach space X. The results show that if semigroup S(t) is strongly continuous, the functionsf and g are compact and the control B is bounded, then it is nonlocally controllable. The nonlocal controllability for the above nonlocal problem is also studied when B and W are unbounded and the semigroup S(t) is compact or strongly continuous. For illustration, a partial differential equation is worked out.展开更多
Even today,academics continue to debate the effect of feminization of agricultural labor force on agricultural output.By considering the dimensions of participation in decision-making and production,this study divides...Even today,academics continue to debate the effect of feminization of agricultural labor force on agricultural output.By considering the dimensions of participation in decision-making and production,this study divides the various agricultural production models into three types:(i)the traditional model of decisions made either jointly by men and women or by men alone while both genders participate in production,(ii)complete feminization of agricultural decision-making and the production labor force,and(iii)feminization of the agricultural production labor force only.This study investigates the effects of combining or separating decision-making and production in regard to agricultural development in the context of feminization of the agricultural labor force.Using follow-up data collected from 2004–2008 by the Ministry of Agriculture of China,we built a comprehensive panel data model to test our hypotheses.Our research shows that in comparison to traditional agricultural households and fully feminized agricultural labor forces,partially feminized production resulted in lower grain yield and technological advancement.The feminization of agricultural labor does not necessarily have a negative impact on agricultural output,especially since heavy manual labor is being increasingly replaced by agricultural machinery and outsourcing of tasks.The degree of feminization of the decision-making and production processes should be an important consideration when evaluating the purported negative effects of the feminization of agricultural labor.展开更多
Shared control schemes allow a human driver to work with an automated driving agent in driver-vehicle systems while retaining the driver’s abilities to control.The human driver,as an essential agent in the driver-veh...Shared control schemes allow a human driver to work with an automated driving agent in driver-vehicle systems while retaining the driver’s abilities to control.The human driver,as an essential agent in the driver-vehicle shared control systems,should be precisely modeled regarding their cognitive processes,control strategies,and decision-making processes.The interactive strategy design between drivers and automated driving agents brings an excellent challenge for human-centric driver assistance systems due to the inherent characteristics of humans.Many open-ended questions arise,such as what proper role of human drivers should act in a shared control scheme?How to make an intelligent decision capable of balancing the benefits of agents in shared control systems?Due to the advent of these attentions and questions,it is desirable to present a survey on the decision making between human drivers and highly automated vehicles,to understand their architectures,human driver modeling,and interaction strategies under the driver-vehicle shared schemes.Finally,we give a further discussion on the key future challenges and opportunities.They are likely to shape new potential research directions.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,wh...In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.展开更多
This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of func...This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of functions which converges to the exact solution of problem. Our emphasis will be on an auxiliary parameter which directly affects on the rate of convergence. Comparison of PIM and the Variational Iteration Method (VIM) is given to show the preference of PIM over VIM. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method.展开更多
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.展开更多
In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l...In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.展开更多
Advanced Process Control (APC) is necessary for oil refining and chemical process in China, but some problems have emerged in the application of APC techniques in this field. This paper discusses the conditions of A...Advanced Process Control (APC) is necessary for oil refining and chemical process in China, but some problems have emerged in the application of APC techniques in this field. This paper discusses the conditions of APC application concerning process design, distributed control system (DCS) choice and regular control. It analyzes the problems and strategies in APC application. Some suggestions are proposed for the enterprise to benefit from APC application.展开更多
We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discus...We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.展开更多
Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal co...Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.展开更多
A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which i...A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.展开更多
In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between t...In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between the functions and behaviors of these systems and their similar structures will be studied. Owing to the management of social systems and the course of evolution of biotic systems may be regarded as control processes, the researches will be within the scope of control problems. Moreover, since it is difficult to model for biotic and social systems, it will start with the control problems of complex systems, possessing similar structures, in engineering. The obtained results show that for either linear or nonlinear systems and for a lot of control problems similar structures lead to a series of simplifications. In general, the original system may be decomposed into reduced amount of subsystems with lower dimensions and simpler structures. By virtue of such subsystems, the control problems of original system can be solved more simply. At last, it turns round to observe the biotic and social systems and some analyses are given.展开更多
In the present paper, we show the some properties of the fuzzy R-solution of the control linear fuzzy differential inclusions and research the optimal time problems for it.
We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of t...We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.展开更多
Networked sensing and control has attracted significant interest in recent years due to its wide applications. For example, sensor networks, especially wireless sensor networks, have found important applications in en...Networked sensing and control has attracted significant interest in recent years due to its wide applications. For example, sensor networks, especially wireless sensor networks, have found important applications in environmental monitoring, agriculture, building and industrial automation, machine condition monitoring, intelligent transportation systems, health care, surveillance, and defense. On the other hand, due to the flexibility and significant COSt-saving,展开更多
In order to perform better in target control, this paper proposed a decision-making system method based on fuzzy automata. The decision-making system first preprocessed the signal and then performed a two-level decisi...In order to perform better in target control, this paper proposed a decision-making system method based on fuzzy automata. The decision-making system first preprocessed the signal and then performed a two-level decision on the target to achieve optimal control. The system consisted of four parts: signal preprocessing, contrast decision-making, comprehensive judgment of decision-making and decision-making result. These decision algorithms in target control were given. A concrete application of this decision-making system in target control was described. Being compared with other existing methods, this paper used both global features and local features of target, and used the decision-making system of fuzzy automata for the target control. Simulation results showed that the control effect based on the decision-making system was better than that of the other existing methods. Not only it was faster, but also its correct control rate was higher to be 95.18% for the target control. This research on the control system not only developed the FA theory, but also strengthened its application scope in the field of control engineering.展开更多
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines...A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.展开更多
In the present paper, we show the some properties of the fuzzy R-solution of the control linear fuzzy differential inclusions and research the time-optimal problems for it.
基金supported by the National Natural Science Foundation of China(Grant No.52179105)China Postdoctoral Science Foundation(Grant No.2024M762193)。
文摘In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.
基金the National Natural Science Foundation of China(No.10674024)
文摘If A: D(A) X→X is a densely defined and closed linear operator, which generates a linear semigroup S (t) in Banach space X. The nonlocal control/ability for the following nonlocal semilinear problems: u' (t) = Au (t) + Bx( t) + f( t, u(t) ), 0≤t ≤ T with nonlocal initial condition u(0) = u0 + g(u) is discussed in Banach space X. The results show that if semigroup S(t) is strongly continuous, the functionsf and g are compact and the control B is bounded, then it is nonlocally controllable. The nonlocal controllability for the above nonlocal problem is also studied when B and W are unbounded and the semigroup S(t) is compact or strongly continuous. For illustration, a partial differential equation is worked out.
基金supported by the the National Natural Science Foundation of China (71573133, 71673047 and 71473122)the Center for Food Security Research of Nanjing Agricultural Universitythe Center for Cooperative Innovation of Modern Grain Circulation and Security of Jiangsu Province, China
文摘Even today,academics continue to debate the effect of feminization of agricultural labor force on agricultural output.By considering the dimensions of participation in decision-making and production,this study divides the various agricultural production models into three types:(i)the traditional model of decisions made either jointly by men and women or by men alone while both genders participate in production,(ii)complete feminization of agricultural decision-making and the production labor force,and(iii)feminization of the agricultural production labor force only.This study investigates the effects of combining or separating decision-making and production in regard to agricultural development in the context of feminization of the agricultural labor force.Using follow-up data collected from 2004–2008 by the Ministry of Agriculture of China,we built a comprehensive panel data model to test our hypotheses.Our research shows that in comparison to traditional agricultural households and fully feminized agricultural labor forces,partially feminized production resulted in lower grain yield and technological advancement.The feminization of agricultural labor does not necessarily have a negative impact on agricultural output,especially since heavy manual labor is being increasingly replaced by agricultural machinery and outsourcing of tasks.The degree of feminization of the decision-making and production processes should be an important consideration when evaluating the purported negative effects of the feminization of agricultural labor.
文摘Shared control schemes allow a human driver to work with an automated driving agent in driver-vehicle systems while retaining the driver’s abilities to control.The human driver,as an essential agent in the driver-vehicle shared control systems,should be precisely modeled regarding their cognitive processes,control strategies,and decision-making processes.The interactive strategy design between drivers and automated driving agents brings an excellent challenge for human-centric driver assistance systems due to the inherent characteristics of humans.Many open-ended questions arise,such as what proper role of human drivers should act in a shared control scheme?How to make an intelligent decision capable of balancing the benefits of agents in shared control systems?Due to the advent of these attentions and questions,it is desirable to present a survey on the decision making between human drivers and highly automated vehicles,to understand their architectures,human driver modeling,and interaction strategies under the driver-vehicle shared schemes.Finally,we give a further discussion on the key future challenges and opportunities.They are likely to shape new potential research directions.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
文摘In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.
文摘This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of functions which converges to the exact solution of problem. Our emphasis will be on an auxiliary parameter which directly affects on the rate of convergence. Comparison of PIM and the Variational Iteration Method (VIM) is given to show the preference of PIM over VIM. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method.
基金supported by the National Natural Science Foundation of China (62173333, 12271522)Beijing Natural Science Foundation (Z210002)the Research Fund of Renmin University of China (2021030187)。
文摘For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.
文摘In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.
文摘Advanced Process Control (APC) is necessary for oil refining and chemical process in China, but some problems have emerged in the application of APC techniques in this field. This paper discusses the conditions of APC application concerning process design, distributed control system (DCS) choice and regular control. It analyzes the problems and strategies in APC application. Some suggestions are proposed for the enterprise to benefit from APC application.
文摘We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.
文摘Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.
文摘A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.
文摘In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between the functions and behaviors of these systems and their similar structures will be studied. Owing to the management of social systems and the course of evolution of biotic systems may be regarded as control processes, the researches will be within the scope of control problems. Moreover, since it is difficult to model for biotic and social systems, it will start with the control problems of complex systems, possessing similar structures, in engineering. The obtained results show that for either linear or nonlinear systems and for a lot of control problems similar structures lead to a series of simplifications. In general, the original system may be decomposed into reduced amount of subsystems with lower dimensions and simpler structures. By virtue of such subsystems, the control problems of original system can be solved more simply. At last, it turns round to observe the biotic and social systems and some analyses are given.
文摘In the present paper, we show the some properties of the fuzzy R-solution of the control linear fuzzy differential inclusions and research the optimal time problems for it.
文摘We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.
文摘Networked sensing and control has attracted significant interest in recent years due to its wide applications. For example, sensor networks, especially wireless sensor networks, have found important applications in environmental monitoring, agriculture, building and industrial automation, machine condition monitoring, intelligent transportation systems, health care, surveillance, and defense. On the other hand, due to the flexibility and significant COSt-saving,
文摘In order to perform better in target control, this paper proposed a decision-making system method based on fuzzy automata. The decision-making system first preprocessed the signal and then performed a two-level decision on the target to achieve optimal control. The system consisted of four parts: signal preprocessing, contrast decision-making, comprehensive judgment of decision-making and decision-making result. These decision algorithms in target control were given. A concrete application of this decision-making system in target control was described. Being compared with other existing methods, this paper used both global features and local features of target, and used the decision-making system of fuzzy automata for the target control. Simulation results showed that the control effect based on the decision-making system was better than that of the other existing methods. Not only it was faster, but also its correct control rate was higher to be 95.18% for the target control. This research on the control system not only developed the FA theory, but also strengthened its application scope in the field of control engineering.
基金supported by the National Natural Science Foundation of China(11871312,12131014)the Natural Science Foundation of Shandong Province,China(ZR2023MA086)。
文摘A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.
文摘In the present paper, we show the some properties of the fuzzy R-solution of the control linear fuzzy differential inclusions and research the time-optimal problems for it.