Aiming at intelligent decision-making of unmanned aerial vehicle(UAV)based on situation information in air combat,a novelmaneuvering decision method based on deep reinforcement learning is proposed in this paper.The a...Aiming at intelligent decision-making of unmanned aerial vehicle(UAV)based on situation information in air combat,a novelmaneuvering decision method based on deep reinforcement learning is proposed in this paper.The autonomous maneuvering model ofUAV is established byMarkovDecision Process.The Twin DelayedDeep Deterministic Policy Gradient(TD3)algorithm and the Deep Deterministic Policy Gradient(DDPG)algorithm in deep reinforcement learning are used to train the model,and the experimental results of the two algorithms are analyzed and compared.The simulation experiment results show that compared with the DDPG algorithm,the TD3 algorithm has stronger decision-making performance and faster convergence speed and is more suitable for solving combat problems.The algorithm proposed in this paper enables UAVs to autonomously make maneuvering decisions based on situation information such as position,speed,and relative azimuth,adjust their actions to approach,and successfully strike the enemy,providing a new method for UAVs to make intelligent maneuvering decisions during air combat.展开更多
Several models of multi-criteria decision-making(MCDM)have identified the optimal alternative electrical energy sources to supply certain load in an isolated region in Al-Minya City,Egypt.The load demand consists of w...Several models of multi-criteria decision-making(MCDM)have identified the optimal alternative electrical energy sources to supply certain load in an isolated region in Al-Minya City,Egypt.The load demand consists of water pumping system with a water desalination unit.Various options containing three different power sources:only DG,PV-B system,and hybrid PV-DG-B,two different sizes of reverse osmosis(RO)units;RO-250 and RO-500,two strategies of energy management;load following(LF)and cycle charging(CC),and two sizes of DG;5 and 10 kW were taken into account.Eight attributes,including operating cost,renewable fraction,initial cost,the cost of energy,excess energy,unmet load,breakeven grid extension distance,and the amount of CO_(2),were used during the evaluation process.To estimate these parameters,HOMER®software was employed to perform both the simulation and optimization process.Four different weight estimation methods were considered;no priority of criteria,based on a pairwise comparisons matrix of the criteria,CRITIC-method,and entropy-based method.The main findings(output results)confirmed that the optimal option for the case study was hybrid PV-DG-B with the following specification:5 kW DG,RO-500,and load following control strategy.Under this condition,the annual operating cost and initial costs were$5546 and$161022,respectively,whereas the cost of energy was 0.077$/kWh.The excess energy and unmet loads were 40998 and 2371 kWh,respectively.The breakeven grid extension distance and the amount of CO_(2) were 3.31 km and 5171 kg per year,respectively.Compared with DG only,the amount of CO_(2) has been sharply reduced by 113939 kg per year.展开更多
Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance ...Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms.展开更多
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo...Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.展开更多
Learning-based algorithm attracts great attention in the autonomous driving control field,especially for decisionmaking,to meet the challenge in long-tail extreme scenarios,where traditional methods demonstrate poor a...Learning-based algorithm attracts great attention in the autonomous driving control field,especially for decisionmaking,to meet the challenge in long-tail extreme scenarios,where traditional methods demonstrate poor adaptability even with a significant effort.To improve the autonomous driving performance in extreme scenarios,specifically consecutive sharp turns,three deep reinforcement learning algorithms,i.e.Deep Deterministic Policy Gradient(DDPG),Twin Delayed Deep Deterministic policy gradient(TD3),and Soft Actor-Critic(SAC),based decision-making policies are proposed in this study.The role of the observation variable in agent training is discussed by comparing the driving stability,average speed,and consumed computational effort of the proposed algorithms in curves with various curvatures.In addition,a novel reward-setting method that combines the states of the environment and the vehicle is proposed to solve the sparse reward problem in the reward-guided algorithm.Simulation results from the road with consecutive sharp turns show that the DDPG,SAC,and TD3 algorithms-based vehicles take 367.2,359.6,and 302.1 s to finish the task,respectively,which match the training results,and verifies the observation variable role in agent quality improvement.展开更多
Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements...Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability.展开更多
Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularl...Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
This paper presents a heuristic polarity decision-making algorithm for solving Boolean satisfiability (SAT). The algorithm inherits many features of the current state-of-the-art SAT solvers, such as fast BCP, clause...This paper presents a heuristic polarity decision-making algorithm for solving Boolean satisfiability (SAT). The algorithm inherits many features of the current state-of-the-art SAT solvers, such as fast BCP, clause recording, restarts, etc. In addition, a preconditioning step that calculates the polarities of variables according to the cover distribution of Karnaugh map is introduced into DPLL procedure, which greatly reduces the number of conflicts in the search process. The proposed approach is implemented as a SAT solver named DiffSat. Experiments show that DiffSat can solve many "real-life" instances in a reasonable time while the best existing SAT solvers, such as Zchaff and MiniSat, cannot. In particular, DiffSat can solve every instance of Bart benchmark suite in less than 0.03 s while Zchaff and MiniSat fail under a 900 s time limit. Furthermore, DiffSat even outperforms the outstanding incomplete algorithm DLM in some instances.展开更多
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati...The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.展开更多
To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforce...To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.展开更多
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple...A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload.展开更多
This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous drivi...This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure.展开更多
In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support...In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support provided by wartime military material support powers can be more effective. When the principles,requirements, influencing factors and goals of military material support forces are deployed in wartime, an evaluation indicator system is established. Thus, a new combined empowerment method based on an analytic hierarchy process(AHP) is developed to calculate the subjective weights, and the rough entropy method is used to calculate the objective weights. Combination weights can be obtained by calculating the weight preference coefficient error, which is determined by combining the cooperative game method and the minimum deviation into objectives. This approach can determine the grey relation projection coefficient and synthesize the measure scheme superiority to finally optimize the deployment plan using the grey relation projection decision-making method. The results show that the method is feasible and effective;it can provide a more scientific and practical decision-making basis for the military material support power deployment in wartime.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpfu...BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.展开更多
Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources...Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources restrict direct application to large-scale inference tasks.Additionally,no quantum methods are currently available for multi-agent collaborative decision-making.To address these,we propose a hybrid quantum–classical multi-agent decision-making framework based on hierarchical Bayesian networks,comprising two novel methods.The first one is a hybrid quantum–classical inference method based on hierarchical Bayesian networks.It decomposes large-scale hierarchical Bayesian networks into modular subnetworks.The inference for each subnetwork can be performed on NISQ devices,and the intermediate results are converted into classical messages for cross-layer transmission.The second one is a multi-agent decision-making method using the variational quantum eigensolver(VQE)in the influence diagram.This method models the collaborative decision-making with the influence diagram and encodes the expected utility of diverse actions into a Hamiltonian and subsequently determines the intra-group optimal action efficiently.Experimental validation on the IonQ quantum simulator demonstrates that the hierarchical method outperforms the non-hierarchical method at the functional inference level,and the VQE method can obtain the optimal strategy exactly at the collaborative decision-making level.Our research not only extends the application of quantum computing to multi-agent decision-making but also provides a practical solution for the NISQ era.展开更多
Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues le...Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues leading to those decisions.Methods Semi-structured personal interviews were used to collect data.Seven family members of patients with malignant brain tumors were selected to participate in the study by purposive sampling method from June to August 2022 in the Patient Family Association of Japan.Responses were content analyzed to explore the relationship between the content of decisions regarding“treatment policies”and“daily care”and the cues influencing those decisions.Semi-structured interviews were analyzed by using thematic analysis.Results The contents of proxy decisions regarding“treatment policies”included implementation,interruption,and termination of initial treatments,free medical treatments,use of respirators,and end-of-life sedation and included six cues:treatment policies suggested by the primary physician,information and knowledge about the disease and treatment obtained by the family from limited resources,perceived life threat from symptom worsening,words and reactions from the patient regarding treatment,patient’s personality and way of life inferred from their treatment preferences,family’s thoughts and values hoping for better treatment for the patient.Decisions for“daily care”included meal content and methods,excretion,mobility,maintaining cleanliness,rehabilitation,continuation or resignation from work,treatment settings(outpatient or inpatient),and ways to spend time outside and included seven cues:words and thoughts from the patient about their way of life,patient’s reactions and life history inferred from their preferred way of living,things the patient can do to maintain daily life and roles,awareness of the increasing inability to do things in daily life,family’s underlying thoughts and values about how to spend the remaining time,approval from family members regarding the care setting,advice from medical professionals on living at home.Conclusions For“treatment policies,”guidelines from medical professionals were a key cue,while for“daily care,”the small signs from the patients in their daily lives served as cues for proxy decision-making.This may be due to the lack of information available to families and the limited time available for discussion with the patient.Families of patients with malignant brain tumors repeatedly use multiple cues to make proxy decision-making under high uncertainty.Therefore,nurses supporting proxy decision-making should assess the family’s situation and provide cues that facilitate informed and confident decisions.展开更多
Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studie...Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studies on collective behavior in small animals such as fish and insects are well-established,similar research on large wild animals remains challenging due to the limited availability of sufficient and systematic field data.Here,we aimed to explore the collective decision-making pattern and its sexual difference for the dimorphic Tibetan antelopes Pantholops hodgsonii(chiru)in Xizang Autonomous Region,China,by analyzing individual leadership distribution,as well as the joining process,considering factors such as calving stages and joining ranks.The distinct correlations of decision participants’ratio with group size and decision duration underscore the trade-off between accuracy and speed in decision-making.Male antelopes display a more democratic decision-making pattern,while females exhibit more prompt responses after calving at an early stage.This study uncovers a partially shared decision-making strategy among Tibetan antelopes,suggesting flexible self-organization in group decision processes aligned with animal life cycle progression.展开更多
基金acknowledge National Natural Science Foundation of China(Grant No.61573285,No.62003267)Open Fund of Key Laboratory of Data Link Technology of China Electronics Technology Group Corporation(Grant No.CLDL-20182101)Natural Science Foundation of Shaanxi Province(Grant No.2020JQ220)to provide fund for conducting experiments.
文摘Aiming at intelligent decision-making of unmanned aerial vehicle(UAV)based on situation information in air combat,a novelmaneuvering decision method based on deep reinforcement learning is proposed in this paper.The autonomous maneuvering model ofUAV is established byMarkovDecision Process.The Twin DelayedDeep Deterministic Policy Gradient(TD3)algorithm and the Deep Deterministic Policy Gradient(DDPG)algorithm in deep reinforcement learning are used to train the model,and the experimental results of the two algorithms are analyzed and compared.The simulation experiment results show that compared with the DDPG algorithm,the TD3 algorithm has stronger decision-making performance and faster convergence speed and is more suitable for solving combat problems.The algorithm proposed in this paper enables UAVs to autonomously make maneuvering decisions based on situation information such as position,speed,and relative azimuth,adjust their actions to approach,and successfully strike the enemy,providing a new method for UAVs to make intelligent maneuvering decisions during air combat.
文摘Several models of multi-criteria decision-making(MCDM)have identified the optimal alternative electrical energy sources to supply certain load in an isolated region in Al-Minya City,Egypt.The load demand consists of water pumping system with a water desalination unit.Various options containing three different power sources:only DG,PV-B system,and hybrid PV-DG-B,two different sizes of reverse osmosis(RO)units;RO-250 and RO-500,two strategies of energy management;load following(LF)and cycle charging(CC),and two sizes of DG;5 and 10 kW were taken into account.Eight attributes,including operating cost,renewable fraction,initial cost,the cost of energy,excess energy,unmet load,breakeven grid extension distance,and the amount of CO_(2),were used during the evaluation process.To estimate these parameters,HOMER®software was employed to perform both the simulation and optimization process.Four different weight estimation methods were considered;no priority of criteria,based on a pairwise comparisons matrix of the criteria,CRITIC-method,and entropy-based method.The main findings(output results)confirmed that the optimal option for the case study was hybrid PV-DG-B with the following specification:5 kW DG,RO-500,and load following control strategy.Under this condition,the annual operating cost and initial costs were$5546 and$161022,respectively,whereas the cost of energy was 0.077$/kWh.The excess energy and unmet loads were 40998 and 2371 kWh,respectively.The breakeven grid extension distance and the amount of CO_(2) were 3.31 km and 5171 kg per year,respectively.Compared with DG only,the amount of CO_(2) has been sharply reduced by 113939 kg per year.
基金co-supported by the National Natural Science Foundation of China(No.52272382)the Aeronautical Science Foundation of China(No.20200017051001)the Fundamental Research Funds for the Central Universities,China.
文摘Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms.
基金supported by the Key Research and Development Program of Shaanxi (2022GXLH-02-09)the Aeronautical Science Foundation of China (20200051053001)the Natural Science Basic Research Program of Shaanxi (2020JM-147)。
文摘Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
文摘Learning-based algorithm attracts great attention in the autonomous driving control field,especially for decisionmaking,to meet the challenge in long-tail extreme scenarios,where traditional methods demonstrate poor adaptability even with a significant effort.To improve the autonomous driving performance in extreme scenarios,specifically consecutive sharp turns,three deep reinforcement learning algorithms,i.e.Deep Deterministic Policy Gradient(DDPG),Twin Delayed Deep Deterministic policy gradient(TD3),and Soft Actor-Critic(SAC),based decision-making policies are proposed in this study.The role of the observation variable in agent training is discussed by comparing the driving stability,average speed,and consumed computational effort of the proposed algorithms in curves with various curvatures.In addition,a novel reward-setting method that combines the states of the environment and the vehicle is proposed to solve the sparse reward problem in the reward-guided algorithm.Simulation results from the road with consecutive sharp turns show that the DDPG,SAC,and TD3 algorithms-based vehicles take 367.2,359.6,and 302.1 s to finish the task,respectively,which match the training results,and verifies the observation variable role in agent quality improvement.
基金Supported by National Key R&D Program of China(Grant No.2022YFB2503203)National Natural Science Foundation of China(Grant No.U1964206).
文摘Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability.
文摘Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
基金the National Natural Science Foundation of China (Grant Nos. 90207002, 90307017, 60773125 and 60676018)National Science Foundation (Grant Nos. CCR-0306298)+1 种基金China Postdoctoral Science Foundation (Grant No. KLH1202005)the Natural Science Foundation of Shanghai City (Grant No. 06ZR14016)
文摘This paper presents a heuristic polarity decision-making algorithm for solving Boolean satisfiability (SAT). The algorithm inherits many features of the current state-of-the-art SAT solvers, such as fast BCP, clause recording, restarts, etc. In addition, a preconditioning step that calculates the polarities of variables according to the cover distribution of Karnaugh map is introduced into DPLL procedure, which greatly reduces the number of conflicts in the search process. The proposed approach is implemented as a SAT solver named DiffSat. Experiments show that DiffSat can solve many "real-life" instances in a reasonable time while the best existing SAT solvers, such as Zchaff and MiniSat, cannot. In particular, DiffSat can solve every instance of Bart benchmark suite in less than 0.03 s while Zchaff and MiniSat fail under a 900 s time limit. Furthermore, DiffSat even outperforms the outstanding incomplete algorithm DLM in some instances.
文摘The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFE0117100)National Science Foundation of China(Grant No.52102468,52325212)Fundamental Research Funds for the Central Universities。
文摘To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.
基金supported by the National Aerospace Science Foundation of China(20138053038)the Graduate Starting Seed Fund of Northwestern Polytechnical University(Z2015111)
文摘A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload.
基金funded by Chongqing Science and Technology Bureau (No.cstc2021jsyj-yzysbAX0008)Chongqing University of Arts and Sciences (No.P2021JG13)2021 Humanities and Social Sciences Program of Chongqing Education Commission (No.21SKGH227).
文摘This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure.
基金supported by the Education Science Fund of the Military Science Institute of Beijing,China(2015JY320)
文摘In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support provided by wartime military material support powers can be more effective. When the principles,requirements, influencing factors and goals of military material support forces are deployed in wartime, an evaluation indicator system is established. Thus, a new combined empowerment method based on an analytic hierarchy process(AHP) is developed to calculate the subjective weights, and the rough entropy method is used to calculate the objective weights. Combination weights can be obtained by calculating the weight preference coefficient error, which is determined by combining the cooperative game method and the minimum deviation into objectives. This approach can determine the grey relation projection coefficient and synthesize the measure scheme superiority to finally optimize the deployment plan using the grey relation projection decision-making method. The results show that the method is feasible and effective;it can provide a more scientific and practical decision-making basis for the military material support power deployment in wartime.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.
基金supported by the National Natural Science Foundation of China(Grant Nos.62473371 and 61673389)。
文摘Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources restrict direct application to large-scale inference tasks.Additionally,no quantum methods are currently available for multi-agent collaborative decision-making.To address these,we propose a hybrid quantum–classical multi-agent decision-making framework based on hierarchical Bayesian networks,comprising two novel methods.The first one is a hybrid quantum–classical inference method based on hierarchical Bayesian networks.It decomposes large-scale hierarchical Bayesian networks into modular subnetworks.The inference for each subnetwork can be performed on NISQ devices,and the intermediate results are converted into classical messages for cross-layer transmission.The second one is a multi-agent decision-making method using the variational quantum eigensolver(VQE)in the influence diagram.This method models the collaborative decision-making with the influence diagram and encodes the expected utility of diverse actions into a Hamiltonian and subsequently determines the intra-group optimal action efficiently.Experimental validation on the IonQ quantum simulator demonstrates that the hierarchical method outperforms the non-hierarchical method at the functional inference level,and the VQE method can obtain the optimal strategy exactly at the collaborative decision-making level.Our research not only extends the application of quantum computing to multi-agent decision-making but also provides a practical solution for the NISQ era.
文摘Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues leading to those decisions.Methods Semi-structured personal interviews were used to collect data.Seven family members of patients with malignant brain tumors were selected to participate in the study by purposive sampling method from June to August 2022 in the Patient Family Association of Japan.Responses were content analyzed to explore the relationship between the content of decisions regarding“treatment policies”and“daily care”and the cues influencing those decisions.Semi-structured interviews were analyzed by using thematic analysis.Results The contents of proxy decisions regarding“treatment policies”included implementation,interruption,and termination of initial treatments,free medical treatments,use of respirators,and end-of-life sedation and included six cues:treatment policies suggested by the primary physician,information and knowledge about the disease and treatment obtained by the family from limited resources,perceived life threat from symptom worsening,words and reactions from the patient regarding treatment,patient’s personality and way of life inferred from their treatment preferences,family’s thoughts and values hoping for better treatment for the patient.Decisions for“daily care”included meal content and methods,excretion,mobility,maintaining cleanliness,rehabilitation,continuation or resignation from work,treatment settings(outpatient or inpatient),and ways to spend time outside and included seven cues:words and thoughts from the patient about their way of life,patient’s reactions and life history inferred from their preferred way of living,things the patient can do to maintain daily life and roles,awareness of the increasing inability to do things in daily life,family’s underlying thoughts and values about how to spend the remaining time,approval from family members regarding the care setting,advice from medical professionals on living at home.Conclusions For“treatment policies,”guidelines from medical professionals were a key cue,while for“daily care,”the small signs from the patients in their daily lives served as cues for proxy decision-making.This may be due to the lack of information available to families and the limited time available for discussion with the patient.Families of patients with malignant brain tumors repeatedly use multiple cues to make proxy decision-making under high uncertainty.Therefore,nurses supporting proxy decision-making should assess the family’s situation and provide cues that facilitate informed and confident decisions.
基金supported by the National Natural Science Foundation of China(Grant no.32101237)the China Postdoctoral Science Foundation(Grant no.2021M691522)+1 种基金the National Key Research and Development Program(Grant no.2022YFC3202104)the Tibet Major Science and Technology Project(Grant no.XZ201901-GA-06).
文摘Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studies on collective behavior in small animals such as fish and insects are well-established,similar research on large wild animals remains challenging due to the limited availability of sufficient and systematic field data.Here,we aimed to explore the collective decision-making pattern and its sexual difference for the dimorphic Tibetan antelopes Pantholops hodgsonii(chiru)in Xizang Autonomous Region,China,by analyzing individual leadership distribution,as well as the joining process,considering factors such as calving stages and joining ranks.The distinct correlations of decision participants’ratio with group size and decision duration underscore the trade-off between accuracy and speed in decision-making.Male antelopes display a more democratic decision-making pattern,while females exhibit more prompt responses after calving at an early stage.This study uncovers a partially shared decision-making strategy among Tibetan antelopes,suggesting flexible self-organization in group decision processes aligned with animal life cycle progression.