期刊文献+
共找到317篇文章
< 1 2 16 >
每页显示 20 50 100
基于Adaboost和Decision Tree的地层岩性预测研究
1
作者 杨春曦 肖文梁 +2 位作者 徐亚军 郝梓宇 鲍挺 《地下空间与工程学报》 北大核心 2025年第S2期634-642,650,共10页
本文旨在研究基于Adaboost和Decision Tree算法的地层岩性预测方法,通过对气井的地层岩性实测数据进行分析,筛选出深度、地层电阻率等九种关键地球物理参数,利用上述机器学习算法构建气井地层岩性预测模型。在模型构建过程中,为解决Adab... 本文旨在研究基于Adaboost和Decision Tree算法的地层岩性预测方法,通过对气井的地层岩性实测数据进行分析,筛选出深度、地层电阻率等九种关键地球物理参数,利用上述机器学习算法构建气井地层岩性预测模型。在模型构建过程中,为解决Adaboost SAMME和Decision Tree算法参数选取和优化难点,利用交叉验证法筛选出最优参数组合。结果表明:Adaboost SAMME算法在岩性和地层岩性预测方面表现优异,准确率高达96%以上,相对而言,Decision Tree算法准确率稍低,为87%;模型预测准确率随训练集比例的增大而增加,原始数据随机化处理可以提高模型预测准确率;主成分分析(PCA)效果明显优于奇异值分解(SVD)。研究成果可为地下空间与能源工程钻井的地层岩性预测提供参考。 展开更多
关键词 地层岩性预测 机器学习 ADABOOST decision tree
原文传递
Comparison of the performance of gradient boost,linear regression,decision tree,and voting algorithms to separate geochemical anomalies areas in the fractal environment
2
作者 Mirmahdi Seyedrahimi-Niaraq Hossein Mahdiyanfar Mohammad hossein Olyaee 《Artificial Intelligence in Geosciences》 2025年第2期290-305,共16页
In this investigation,the Gradient Boosting(GB),Linear Regression(LR),Decision Tree(DT),and Voting algo-rithms were applied to predict the distribution pattern of Au geochemical data.Trace and indicator elements,inclu... In this investigation,the Gradient Boosting(GB),Linear Regression(LR),Decision Tree(DT),and Voting algo-rithms were applied to predict the distribution pattern of Au geochemical data.Trace and indicator elements,including Mo,Cu,Pb,Zn,Ag,Ni,Co,Mn,Fe,and As,were used with these machine learning algorithms(MLAs)to predict Au concentration values in the Doostbigloo porphyry Cu-Au-Mo mineralization area.The performance of the models was evaluated using the Mean Absolute Percentage Error(MAPE)and Root Mean Square Error(RMSE)metrics.The proposed ensemble Voting algorithm outperformed the other models,yielding more ac-curate predictions according to both metrics.The predicted data from the GB,LR,DT,and Voting MLAs were modeled using the Concentration-Area fractal method,and Au geochemical anomalies were mapped.To compare and validate the results,factors such as the location of the mineral deposits,their surface extent,and mineralization trend were considered.The results indicate that integrating hybrid MLAs with fractal modeling signifi-cantly improves geochemical prospectivity mapping.Among the four models,three(DT,GB,Voting)accurately identified both mineral deposits.The LR model,however,only identified Deposit I(central),and its mineralization trend diverged from the field data.The GB and Voting models produced similar results,with their final maps derived from fractal modeling showing the same anomalous areas.The anomaly boundaries identified by these two models are consistent with the two known reserves in the region.The results and plots related to prediction indicators and error rates for these two models also show high similarity,with lower error rates than the other models.Notably,the Voting model demonstrated superior performance in accurately delineating mineral deposit locations and identifying realistic mineralization trends while minimizing false anomalies. 展开更多
关键词 Gradient boost Linear regression decision tree Voting algorithm C-A fractal modeling Geochemical mapping
在线阅读 下载PDF
Swarm-based Cost-sensitive Decision Tree Using Optimized Rules for Imbalanced Data Classification
3
作者 Mehdi Mansouri Mohammad H.Nadimi-Shahraki Zahra Beheshti 《Journal of Bionic Engineering》 2025年第3期1434-1458,共25页
Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs... Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs others. Cost-sensitive learning is a strategy to solve this problem, and several cost-sensitive DT algorithms have been proposed to date. However, existing algorithms, which are heuristic, tried to greedily select either a better splitting point or feature node, leading to local optima for tree nodes and ignoring the cost of the whole tree. In addition, determination of the costs is difficult and often requires domain expertise. This study proposes a DT for imbalanced data, called Swarm-based Cost-sensitive DT (SCDT), using the cost-sensitive learning strategy and an enhanced swarm-based algorithm. The DT is encoded using a hybrid individual representation. A hybrid artificial bee colony approach is designed to optimize rules, considering specified costs in an F-Measure-based fitness function. Experimental results using datasets compared with state-of-the-art DT algorithms show that the SCDT method achieved the highest performance on most datasets. Moreover, SCDT also excels in other critical performance metrics, such as recall, precision, F1-score, and AUC, with notable results with average values of 83%, 87.3%, 85%, and 80.7%, respectively. 展开更多
关键词 decision tree Cost-sensitive learning Artificial bee colony Swarm-based Imbalanced classification
在线阅读 下载PDF
Multi-round dynamic game decision-making of UAVs based on decision tree
4
作者 WANG Linmeng WANG Yuhui +1 位作者 CHEN Mou DING Shulin 《Journal of Systems Engineering and Electronics》 2025年第4期1006-1016,共11页
To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on ... To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on game the-ory and the confrontation characteristics of air combat,a dynamic game process is constructed including the strategy sets,the situation information,and the maneuver decisions for both sides of air combat.By analyzing the UAV’s flight dyna-mics and the both sides’information,a payment matrix is estab-lished through the situation advantage function,performance advantage function,and profit function.Furthermore,the dynamic game decision problem is solved based on the linear induction method to obtain the Nash equilibrium solution,where the decision tree method is introduced to obtain the optimal maneuver decision,thereby improving the situation advantage in the next round of confrontation.According to the analysis,the simulation results for the confrontation scenarios of multi-round air combat are presented to verify the effectiveness and advan-tages of the proposed method. 展开更多
关键词 unmanned aerial vehicle(UAV) multi-round con-frontation dynamic game decision decision tree.
在线阅读 下载PDF
Evolving adaptive and interpretable decision trees for cooperative submarine search
5
作者 Yang Gao Yue Wang +3 位作者 Lingyun Tian Xiaotong Hong Chao Xue Dongguang Li 《Defence Technology(防务技术)》 2025年第6期83-94,共12页
System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose sign... System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability. 展开更多
关键词 Cooperative decision making Interpretable decision trees Cooperative submarine search Maritime unmanned systems
在线阅读 下载PDF
Study on Crops Classification Based on Multi-spectral Image and Decision Tree Method 被引量:2
6
作者 刘磊 江东 +1 位作者 徐敏 尹芳 《Agricultural Science & Technology》 CAS 2011年第11期1703-1706,1710,共5页
[Objective] The aim was to explore the feasibility of using single spectrum image to classify crops based on multi-spectral image and Decision Tree Method. [Method] Taking the typical agriculture plantation area in Hu... [Objective] The aim was to explore the feasibility of using single spectrum image to classify crops based on multi-spectral image and Decision Tree Method. [Method] Taking the typical agriculture plantation area in Hulunbeier area, according to field measured spectrum data, the optimum time of main crops, barley, wheat, rapeseed, based on crops spectrum characteristics, by dint of decision-making tree method, and considering spectral matching method, classification of crops was studied such as SAM. [Result] By dint of Landsat TM image gained in the first half of August, based on geographic and atmospheric proof-reading, decision-making tree was constructed. Plantation information about wheat, barley, and rapeseed and plantation grassland was extracted successfully. The general classification accuracy reached 86.90%. Kappa coefficient was 0.831 1. [Conclusion] Taking typical spectrum image as data source, and applying Decision Tree Method to get crops type's information had fine application future. 展开更多
关键词 Remote sensing PHENOLOGY decision tree Crop type
在线阅读 下载PDF
Study on Extracting Information about Settlements Distribution in Western Jilin Province Based on Decision Tree Model 被引量:1
7
作者 连懿 陈圣波 +1 位作者 王亚楠 逄超 《Journal of Landscape Research》 2010年第2期92-95,共4页
With western Jilin Province as the study region, spectral characteristics and texture features of remote sensing images were taken as the classification basis to construct a Decision Tree Model and extract information... With western Jilin Province as the study region, spectral characteristics and texture features of remote sensing images were taken as the classification basis to construct a Decision Tree Model and extract information about settlements in western Jilin Province, and the manually-extracted information about settlements in western Jilin Province was evaluated by confusion matrix. The results showed that Decision Tree Model was convenient for extracting settlements information by integrating spectral and texture features, and the accuracy of such a method was higher than that of the traditional Maximum Liklihood Method, in addition, calculation methods of extracting settlements information by this mean were concluded. 展开更多
关键词 SETTLEMENTS TM Western Jilin Province Spectral characteristics Texture features decision tree Confusion matrix
在线阅读 下载PDF
Forecasting Model of Agro-meteorological Disaster Grade Based on Decision Tree 被引量:2
8
作者 司巧梅 《Meteorological and Environmental Research》 CAS 2010年第2期85-87,90,共4页
Based on the discuss of the basic concept of data mining technology and the decision tree method,combining with the data samples of wind and hailstorm disasters in some counties of Mudanjiang region,the forecasting mo... Based on the discuss of the basic concept of data mining technology and the decision tree method,combining with the data samples of wind and hailstorm disasters in some counties of Mudanjiang region,the forecasting model of agro-meteorological disaster grade was established by adopting the C4.5 classification algorithm of decision tree,which can forecast the direct economic loss degree to provide rational data mining model and obtain effective analysis results. 展开更多
关键词 Data mining Agro-meteorology decision tree C4.5 algorithm Classification mining China
在线阅读 下载PDF
Application of Clustering-based Decision Tree in the Screening of Maize Germplasm 被引量:2
9
作者 王斌 《Agricultural Science & Technology》 CAS 2011年第10期1449-1452,共4页
[Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm base... [Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm based upon clustering is adopted in this paper,which is improved against the defect that traditional decision tree algorithm fails to handle samples of no classes.Meanwhile,the improved algorithm is also applied to the screening of maize varieties.Through the indices as leaf area,plant height,dry weight,potassium(K) utilization and others,maize seeds with strong tolerance of hypokalemic are filtered out.[Result] The algorithm in the screening of maize germplasm has great applicability and good performance.[Conclusion] In the future more efforts should be made to compare improved the performance of fuzzy decision tree based upon clustering with the performance of traditional fuzzy one,and it should be applied into more realistic problems. 展开更多
关键词 FCM decision tree based upon clustering Screening indices Tolerance of hypokalemic
在线阅读 下载PDF
Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management 被引量:23
10
作者 Zizheng Guo Yu Shi +2 位作者 Faming Huang Xuanmei Fan Jinsong Huang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期243-261,共19页
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study pres... Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT) model and the K-means cluster algorithm to produce a regional landslide susceptibility map. Yanchang County, a typical landslide-prone area located in northwestern China, was taken as the area of interest to introduce the proposed application procedure. A landslide inventory containing 82 landslides was prepared and subsequently randomly partitioned into two subsets: training data(70% landslide pixels) and validation data(30% landslide pixels). Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means cluster algorithm. The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC) curve) of the proposed model was the highest, reaching 0.88,compared with traditional models(support vector machine(SVM) = 0.85, Bayesian network(BN) = 0.81,frequency ratio(FR) = 0.75, weight of evidence(WOE) = 0.76). The landslide frequency ratio and frequency density of the high susceptibility zones were 6.76/km^(2) and 0.88/km^(2), respectively, which were much higher than those of the low susceptibility zones. The top 20% interval of landslide occurrence probability contained 89% of the historical landslides but only accounted for 10.3% of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without containing more " stable" pixels. Therefore, the obtained susceptibility map is suitable for application to landslide risk management practices. 展开更多
关键词 Landslide susceptibility Frequency ratio C5.0 decision tree K-means cluster Classification Risk management
在线阅读 下载PDF
Decision tree support vector machine based on genetic algorithm for multi-class classification 被引量:17
11
作者 Huanhuan Chen Qiang Wang Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期322-326,共5页
To solve the multi-class fault diagnosis tasks,decision tree support vector machine(DTSVM),which combines SVM and decision tree using the concept of dichotomy,is proposed.Since the classification performance of DTSVM ... To solve the multi-class fault diagnosis tasks,decision tree support vector machine(DTSVM),which combines SVM and decision tree using the concept of dichotomy,is proposed.Since the classification performance of DTSVM highly depends on its structure,to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes,genetic algorithm is introduced into the formation of decision tree,so that the most separable classes would be separated at each node of decisions tree.Numerical simulations conducted on three datasets compared with"one-against-all"and"one-against-one"demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 展开更多
关键词 support vector machine(SVM) decision tree GENETICALGORITHM classification.
在线阅读 下载PDF
Mapping of cropland,cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest 被引量:8
12
作者 Aqil Tariq Jianguo Yan +2 位作者 Alexandre S.Gagnon Mobushir Riaz Khan Faisal Mumtaz 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第3期302-320,共19页
Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote s... Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote sensing is routinely used.However,identifying specific crop types,cropland,and cropping patterns using space-based observations is challenging because different crop types and cropping patterns have similarity spectral signatures.This study applied a methodology to identify cropland and specific crop types,including tobacco,wheat,barley,and gram,as well as the following cropping patterns:wheat-tobacco,wheat-gram,wheat-barley,and wheat-maize,which are common in Gujranwala District,Pakistan,the study region.The methodology consists of combining optical remote sensing images from Sentinel-2 and Landsat-8 with Machine Learning(ML)methods,namely a Decision Tree Classifier(DTC)and a Random Forest(RF)algorithm.The best time-periods for differentiating cropland from other land cover types were identified,and then Sentinel-2 and Landsat 8 NDVI-based time-series were linked to phenological parameters to determine the different crop types and cropping patterns over the study region using their temporal indices and ML algorithms.The methodology was subsequently evaluated using Landsat images,crop statistical data for 2020 and 2021,and field data on cropping patterns.The results highlight the high level of accuracy of the methodological approach presented using Sentinel-2 and Landsat-8 images,together with ML techniques,for mapping not only the distribution of cropland,but also crop types and cropping patterns when validated at the county level.These results reveal that this methodology has benefits for monitoring and evaluating food security in Pakistan,adding to the evidence base of other studies on the use of remote sensing to identify crop types and cropping patterns in other countries. 展开更多
关键词 Sentinel-2 Random Forest CROPLAND crop types cropping patterns decision tree Classifier
原文传递
Nitrogen removal influence factors in A/O process and decision trees for nitrification/denitrification system 被引量:6
13
作者 MAYong PENGYong-zhen +1 位作者 WANGShu-ying WANGXiao-lian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第6期901-907,共7页
In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence ... In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence time), influent COD/TN and HRT(hydraulic retention time) were studied. Results indicated that it was possible to increase nitrogen removal by using corresponding control strategies, such as, adjusting the DO set point according to effluent ammonia concentration; manipulating nitrate recirculation flow according to nitrate concentration at the end of anoxic zone. Based on the experiments results, a knowledge-based approach for supervision of the nitrogen removal problems was considered, and decision trees for diagnosing nitrification and denitrification problems were built and successfully applied to A/O process. 展开更多
关键词 A/O process NITRIFICATION DENITRIFICATION nitrogen removal decision trees
在线阅读 下载PDF
Travel time prediction model of freeway based on gradient boosting decision tree 被引量:9
14
作者 Cheng Juan Chen Xianhua 《Journal of Southeast University(English Edition)》 EI CAS 2019年第3期393-398,共6页
To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in c... To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time. 展开更多
关键词 gradient boosting decision tree (GBDT) travel time prediction FREEWAY traffic state parameter
在线阅读 下载PDF
Canadian children’s and youth’s adherence to the 24-h movement guidelines during the COVID-19 pandemic: A decision tree analysis 被引量:6
15
作者 Michelle D.Guerrero Leigh M.Vanderloo +3 位作者 Ryan E.Rhodes Guy Faulkner Sarah A.Moore Mark S.Tremblay 《Journal of Sport and Health Science》 SCIE 2020年第4期313-321,共9页
Purpose:The purpose of this study was to use decision tree modeling to generate profiles of children and youth who were more and less likely to meet the Canadian 24-h movement guidelines during the coronavirus disease... Purpose:The purpose of this study was to use decision tree modeling to generate profiles of children and youth who were more and less likely to meet the Canadian 24-h movement guidelines during the coronavirus disease-2019(COVID-19)outbreak.Methods:Data for this study were from a nationally representative sample of 1472 Canadian parents(Meanage=45.12,SD=7.55)of children(511 years old)or youth(1217 years old).Data were collected in April 2020 via an online survey.Survey items assessed demographic,behavioral,social,micro-environmental,and macro-environmental characteristics.Four decision trees of adherence and non-adherence to all movement recommendations combined and each individual movement recommendation(physical activity(PA),screen time,and sleep)were generated.Results:Results revealed specific combinations of adherence and non-adherence characteristics.Characteristics associated with adherence to the recommendation(s)included high parental perceived capability to restrict screen time,annual household income ofCAD 100,000,increases in children’s and youth’s outdoor PA/sport since the COVID-19 outbreak began,being a boy,having parents younger than 43 years old,and small increases in children’s and youth’s sleep duration since the COVID-19 outbreak began.Characteristics associated with non-adherence to the recommendation(s)included low parental perceived capability to restrict screen time,youth aged 1217 years,decreases in children’s and youth’s outdoor PA/sport since the COVID-19 outbreak began,primary residences located in all provinces except Quebec,low parental perceived capability to support children’s and youth’s sleep and PA,and annual household income ofCAD 99,999.Conclusion:Our results show that specific characteristics interact to contribute to(non)adherence to the movement behavior recommendations.Results highlight the importance of targeting parents’perceived capability for the promotion of children’s and youth’s movement behaviors during challenging times of the COVID-19 pandemic,paying particular attention to enhancing parental perceived capability to restrict screen time. 展开更多
关键词 decision tree analysis Parental perceived capability Physical activity Screen time Sleep
在线阅读 下载PDF
Soil Organic Matter Mapping by Decision Tree Modeling 被引量:6
16
作者 ZHOUBin ZHANGXing-Gang WANGFan WANGRen-Chao 《Pedosphere》 SCIE CAS CSCD 2005年第1期103-109,共7页
Based on a case study of Longyou County, Zhejiang Province, the decision tree, a data mining method, was used to analyze the relationships between soil organic matter (SOM) and other environmental and satellite sensin... Based on a case study of Longyou County, Zhejiang Province, the decision tree, a data mining method, was used to analyze the relationships between soil organic matter (SOM) and other environmental and satellite sensing spatial data. The decision tree associated SOM content with some extensive easily observable landscape attributes, such as landform, geology, land use, and remote sensing images, thus transforming the SOM-related information into a clear, quantitative, landscape factor-associated regular syst… 展开更多
关键词 decision tree SOM spatial prediction
在线阅读 下载PDF
Automatic Classification of Cardiac Arrhythmias Based on Hybrid Features and Decision Tree Algorithm 被引量:5
17
作者 Santanu Sahoo Asit Subudhi +1 位作者 Manasa Dash Sukanta Sabut 《International Journal of Automation and computing》 EI CSCD 2020年第4期551-561,共11页
Accurate classification of cardiac arrhythmias is a crucial task because of the non-stationary nature of electrocardiogram(ECG)signals.In a life-threatening situation,an automated system is necessary for early detecti... Accurate classification of cardiac arrhythmias is a crucial task because of the non-stationary nature of electrocardiogram(ECG)signals.In a life-threatening situation,an automated system is necessary for early detection of beat abnormalities in order to reduce the mortality rate.In this paper,we propose an automatic classification system of ECG beats based on the multi-domain features derived from the ECG signals.The experimental study was evaluated on ECG signals obtained from the MIT-BIH Arrhythmia Database.The feature set comprises eight empirical mode decomposition(EMD)based features,three features from variational mode decomposition(VMD)and four features from RR intervals.In total,15 features are ranked according to a ranker search approach and then used as input to the support vector machine(SVM)and C4.5 decision tree classifiers for classifying six types of arrhythmia beats.The proposed method achieved best result in C4.5 decision tree classifier with an accuracy of 98.89%compared to cubic-SVM classifier which achieved an accuracy of 95.35%only.Besides accuracy measures,all other parameters such as sensitivity(Se),specificity(Sp)and precision rates of 95.68%,99.28%and 95.8%was achieved better in C4.5 classifier.Also the computational time of 0.65 s with an error rate of 0.11 was achieved which is very less compared to SVM.The multi-domain based features with decision tree classifier obtained the best results in classifying cardiac arrhythmias hence the system could be used efficiently in clinical practices. 展开更多
关键词 Electrocardiogram(ECG) cardiac arrhythmias empirical mode decomposition(EMD) variational mode decomposition(VMD) hybrid features decision tree classifier
原文传递
Tactical intention recognition of aerial target based on XGBoost decision tree 被引量:11
18
作者 WANG Lei LI Shi-zhong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期148-152,共5页
In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculat... In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention.Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination.To verify the accuracy of recognition results,we compare the experimental results of this paper with the results in the literatures.The experiment shows that the probability of tactical intention recognition through this method is improved,so this method is feasible. 展开更多
关键词 tactical intention recognition of target XGBoost(eXtreme Gradient Boosting)decision tree Dempster-Shafer combination rule
在线阅读 下载PDF
Risk factor analysis and clinical decision tree model construction for diabetic retinopathy in Western China 被引量:4
19
作者 Yuan-Yuan Zhou Tai-Cheng Zhou +8 位作者 Nan Chen Guo-Zhong Zhou Hong-Jian Zhou Xing-Dong Li Jin-Rui Wang Chao-Fang Bai Rong Long Yu-Xin Xiong Ying Yang 《World Journal of Diabetes》 SCIE 2022年第11期986-1000,共15页
BACKGROUND Diabetic retinopathy(DR)is the driving force of blindness in patients with type 2 diabetes mellitus(T2DM).DR has a high prevalence and lacks effective therapeutic strategies,underscoring the need for early ... BACKGROUND Diabetic retinopathy(DR)is the driving force of blindness in patients with type 2 diabetes mellitus(T2DM).DR has a high prevalence and lacks effective therapeutic strategies,underscoring the need for early prevention and treatment.Yunnan province,located in the southwest plateau of China,has a high prevalence of DR and an underdeveloped economy.AIM To build a clinical prediction model that will enable early prevention and treatment of DR.METHODS In this cross-sectional study,1654 Han population with T2DM were divided into groups without(n=826)and with DR(n=828)based on fundus photography.The DR group was further subdivided into non-proliferative DR(n=403)and proliferative DR(n=425)groups.A univariate analysis and logistic regression analysis were conducted and a clinical decision tree model was constructed.RESULTS Diabetes duration≥10 years,female sex,standing-or supine systolic blood pressure(SBP)≥140 mmHg,and cholesterol≥6.22 mmol/L were risk factors for DR in logistic regression analysis(odds ratio=2.118,1.520,1.417,1.881,and 1.591,respectively).A greater severity of chronic kidney disease(CKD)or hemoglobin A 1c increased the risk of DR in patients with T2DM.In the decision tree model,diabetes duration was the primary risk factor affecting the occurrence of DR in patients with T2DM,followed by CKD stage,supine SBP,standing SBP,and body mass index(BMI).DR classification outcomes were obtained by evaluating standing SBP or BMI according to the CKD stage for diabetes duration<10 years and by evaluating CKD stage according to the supine SBP for diabetes duration≥10 years.CONCLUSION Based on the simple and intuitive decision tree model constructed in this study,DR classification outcomes were easily obtained by evaluating diabetes duration,CKD stage,supine or standing SBP,and BMI. 展开更多
关键词 Diabetic retinopathy Type 2 diabetes Western China decision tree
暂未订购
Prediction of Web Services Reliability Based on Decision Tree Classification Method 被引量:3
20
作者 Zhichun Jia Qiuyang Han +2 位作者 Yanyan Li Yuqiang Yang Xing Xing 《Computers, Materials & Continua》 SCIE EI 2020年第6期1221-1235,共15页
With the development of the service-oriented computing(SOC),web service has an important and popular solution for the design of the application system to various enterprises.Nowadays,the numerous web services are prov... With the development of the service-oriented computing(SOC),web service has an important and popular solution for the design of the application system to various enterprises.Nowadays,the numerous web services are provided by the service providers on the network,it becomes difficult for users to select the best reliable one from a large number of services with the same function.So it is necessary to design feasible selection strategies to provide users with the reliable services.Most existing methods attempt to select services according to accurate predictions for the quality of service(QoS)values.However,because the network and user needs are dynamic,it is almost impossible to accurately predict the QoS values.Furthermore,accurate prediction is generally time-consuming.This paper proposes a service decision tree based post-pruning prediction approach.This paper first defines the five reliability levels for measuring the reliability of services.By analyzing the quality data of service from the network,the proposed method can generate the training set and convert them into the service decision tree model.Using the generated model and the given predicted services,the proposed method classifies the service to the corresponding reliability level after discretizing the continuous attribute of service.Moreover,this paper applies the post-pruning strategy to optimize the generated model for avoiding the over-fitting.Experimental results show that the proposed method is effective in predicting the service reliability. 展开更多
关键词 decision tree reliability level quality of service continuous attribute
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部