The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay prop...The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay properties of nonnegative radial ground state solutions.展开更多
In this article,the Moore-Gibson-Thompson heat equation in three-dimensional cylindrical domain are studied.Using a second order differential inequality,we obtain that the solution can decay exponentially as the dista...In this article,the Moore-Gibson-Thompson heat equation in three-dimensional cylindrical domain are studied.Using a second order differential inequality,we obtain that the solution can decay exponentially as the distance from the entry section tends to infinity.Our result can be seen as a version of Saint-Venant principle.展开更多
This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using th...This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using the variational method and the logarithmic type Sobolev inequality,we give some threshold results for blow-up solutions and global solutions,which could be classified by the initial energy.The asymptotic estimates about blow-up time and decay estimate of weak solutions are obtained.展开更多
In this paper, under the hypothesis that y is upper bounded, we construct a Lyapunov functional for the multidimensional isentropic compressible magnetohydrodynamic equations and show that the weak solutions decay exp...In this paper, under the hypothesis that y is upper bounded, we construct a Lyapunov functional for the multidimensional isentropic compressible magnetohydrodynamic equations and show that the weak solutions decay exponentially to the equilibrium state in L2 norm. Our result verifies that the method of Daoyuan Fang, Ruizhao Zi and Ting Zhang I1] can be adapted to magnetohydrodynamic equations.展开更多
In this paper,we study the initial-boundary value problem for the semilinear parabolic equations ut-△Xu=|u|p-1u,where X=(X1,X2,…,Xm)is a system of real smooth vector fields which satisfy the H?rmander’s condition,...In this paper,we study the initial-boundary value problem for the semilinear parabolic equations ut-△Xu=|u|p-1u,where X=(X1,X2,…,Xm)is a system of real smooth vector fields which satisfy the H?rmander’s condition,and△X=∑j=1m Xj2 is a finitely degenerate elliptic operator.Using potential well method,we first prove the invariance of some sets and vacuum isolating of solutions.Finally,by the Galerkin method and the concavity method we show the global existence and blow-up in finite time of solutions with low initial energy or critical initial energy,and also we discuss the asymptotic behavior of the global solutions.展开更多
L^p- L^q decay estimate of solution to Cauchy problem of a linear thermoviscoelastic system is studied. By using a diagonalization argument of frequency analysis, the coupled system will be decoupled micrologically. T...L^p- L^q decay estimate of solution to Cauchy problem of a linear thermoviscoelastic system is studied. By using a diagonalization argument of frequency analysis, the coupled system will be decoupled micrologically. Then with the help of the information of characteristic roots for the coefficient matrix of the system, L^p- L^q decay estimate of parabolic type of solution to the Cauchy problem is obtained.展开更多
We study the global existence of solution to one di- mensional convection-diffusion equation. Through constructing a Cauchy sequence in a Banach space, we get the local existence of solution to the equation, t3ased on...We study the global existence of solution to one di- mensional convection-diffusion equation. Through constructing a Cauchy sequence in a Banach space, we get the local existence of solution to the equation, t3ased on the global bounds of the solu- tion, we extend the local one to a global one that decays in Hl space.展开更多
This paper investigates the spatial behavior of the solutions of the Stokes equations in a semi-infinite cylinder.We consider four kinds of semi-infinite cylinders with boundary conditions of Dirichlet type.For each t...This paper investigates the spatial behavior of the solutions of the Stokes equations in a semi-infinite cylinder.We consider four kinds of semi-infinite cylinders with boundary conditions of Dirichlet type.For each type of cylinder we obtain the spatial decay estimates for the solutions.To make the attenuation meaningful,we derive the explicit bound for the total energy in terms of the initial boundary data.展开更多
This paper considers linearized BCL system with viscosity which is firstly derived by J. L. Bona, T. Colin and D. Lannes for the study of motion of water waves. Ldecay estimate is got by means of Fourier analysis and ...This paper considers linearized BCL system with viscosity which is firstly derived by J. L. Bona, T. Colin and D. Lannes for the study of motion of water waves. Ldecay estimate is got by means of Fourier analysis and frequency decomposition. This result plays key role in studying the global well-posedness of corresponding nonlinear system.展开更多
In this paper,we study the decay estimate and scattering theory for the Klein-Gordon-Hartree equation with radial data in space dimension d≥3.By means of a compactness strategy and two Morawetz-type estimates which c...In this paper,we study the decay estimate and scattering theory for the Klein-Gordon-Hartree equation with radial data in space dimension d≥3.By means of a compactness strategy and two Morawetz-type estimates which come from the linear and nonlinear parts of the equation,respectively,we obtain the corresponding theory for energy subcritical and critical cases.The exponent range of the decay estimates is extended to 0〈γ≤4 and γ〈d with Hartree potential V(x) =|x|-γ.展开更多
In this paper, Saint-Venant's principle for anisotropic material in an end-loaded. semi-infinite elastic strip is established. Energy method is used to establish the lower bounds of the decay estimate of stress ef...In this paper, Saint-Venant's principle for anisotropic material in an end-loaded. semi-infinite elastic strip is established. Energy method is used to establish the lower bounds of the decay estimate of stress effect. An explicit estimate formula in terms of the elastic constants of the anisotropic materials is presented. Finally, a numerical example for an end-loaded, off-axis, graphite-epoxy strip is given to illustrate the results.展开更多
This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽...This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.展开更多
In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ...In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.展开更多
We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions ...We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an n-dimensional incompressible Navier-Stokes equations.We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.展开更多
This paper is concerned with the time decay estimates of the fourth order Schrodinger operator H=o2+V(x)in dimension three,where V(x)is a real valued decaying potential.Assume that zero is a regular point or the first...This paper is concerned with the time decay estimates of the fourth order Schrodinger operator H=o2+V(x)in dimension three,where V(x)is a real valued decaying potential.Assume that zero is a regular point or the first kind resonance of H,and H has no positive eigenvalues,we established the following time optimal decay estimates of e-itHwith a regular term Hα/4:||H^(α/4)e^(-it)P_(ac)(H)||L^(1)-L^(∞)■|t|^(-3+α/4),0≤α≤3When zero is the second or third kind resonance of H,their decay will be significantly changed.We remark that such improved time decay estimates with the extra regular term Hα/4will be interesting in the well-posedness and scattering of nonlinear fourth order Schrodinger equations with potentials.展开更多
This paper investigates the decay properties of solutions to the Cauchy problem for viscoelastic nonlinear hyperbolic dissipative systems on R^(3).Due to the weak dissipation of the system,the decay estimate of soluti...This paper investigates the decay properties of solutions to the Cauchy problem for viscoelastic nonlinear hyperbolic dissipative systems on R^(3).Due to the weak dissipation of the system,the decay estimate of solutions exhibits a loss of regularity,implying that a higher regularity of initial data is required for optimal decay rates compared to the global existence.The aim is to reduce the initial regularity to the lowest possible level to achieve the optimal decay rate.Based on the global existence,we employ energy methods,L^(p)-L^(q)-L^(r) estimates,and harmonic analysis tools to obtain the optimal decay result of solutions.展开更多
The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied w...The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.展开更多
In this article, first, the authors prove that there exists a unique global smooth solution for the Cauthy problem to the hyperbolic conservation laws systems with relaxation; second, in the large time station, they p...In this article, first, the authors prove that there exists a unique global smooth solution for the Cauthy problem to the hyperbolic conservation laws systems with relaxation; second, in the large time station, they prove that the global smooth solutions of the hyperbolic conservation laws systems with relaxation converge to rarefaction waves solution at a determined L^P(p ≥ 2) decay rate.展开更多
In this paper,we investigate the initial boundary value problem for a plate equation with nonlocal source term.The local,global existence and exponential decay result are established under certain conditions.Moreover,...In this paper,we investigate the initial boundary value problem for a plate equation with nonlocal source term.The local,global existence and exponential decay result are established under certain conditions.Moreover,we also prove the blow-up in finite time and the lifespan of solution under certain conditions.展开更多
We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic ...We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic behavior of solutions,an inevitable step is to deal with the integralΩ|ut|^(m−2)utudx.A usual technique is to apply Young’s inequality and Sobolev embedding inequality to use the energy function and its derivative to control this integral for the subcritical or critical damping.However,for the supercritical case,the failure of the Sobolev embedding inequality makes the classical method be impossible.To do this,our strategy is to prove the rate of the integral RΩ|u|^(m)dx grows polynomially as a positive power of time variable t and apply the modified multiplier method to obtain the energy functional decays logarithmically.These results improve and extend our previous work[12].Finally,some numerical examples are also given to authenticate our results.展开更多
基金supported by the Natural Science Research Project of Anhui Educational Committee(2023AH040155)Zhisu Liu's research was supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011679+2 种基金2024A1515012704)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUG2106211CUGST2).
文摘The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay properties of nonnegative radial ground state solutions.
基金Supported by the National Natural Science Foundation of China (11371175)the Research Team of Guangzhou Huashang College(2021HSKT01)Guangzhou Huashang College Mentorship Program(2020HSDS16)。
文摘In this article,the Moore-Gibson-Thompson heat equation in three-dimensional cylindrical domain are studied.Using a second order differential inequality,we obtain that the solution can decay exponentially as the distance from the entry section tends to infinity.Our result can be seen as a version of Saint-Venant principle.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2021MA003).
文摘This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using the variational method and the logarithmic type Sobolev inequality,we give some threshold results for blow-up solutions and global solutions,which could be classified by the initial energy.The asymptotic estimates about blow-up time and decay estimate of weak solutions are obtained.
基金Supported by the National Natural Science Foundation of China(10976026)the Fujian Provincial Department of Science and Technology(JK2009045)
文摘In this paper, under the hypothesis that y is upper bounded, we construct a Lyapunov functional for the multidimensional isentropic compressible magnetohydrodynamic equations and show that the weak solutions decay exponentially to the equilibrium state in L2 norm. Our result verifies that the method of Daoyuan Fang, Ruizhao Zi and Ting Zhang I1] can be adapted to magnetohydrodynamic equations.
基金supported by National Natural Science Foundation of China(11631011 and 11626251)
文摘In this paper,we study the initial-boundary value problem for the semilinear parabolic equations ut-△Xu=|u|p-1u,where X=(X1,X2,…,Xm)is a system of real smooth vector fields which satisfy the H?rmander’s condition,and△X=∑j=1m Xj2 is a finitely degenerate elliptic operator.Using potential well method,we first prove the invariance of some sets and vacuum isolating of solutions.Finally,by the Galerkin method and the concavity method we show the global existence and blow-up in finite time of solutions with low initial energy or critical initial energy,and also we discuss the asymptotic behavior of the global solutions.
基金supported by the National Natural Science Foundation of China (10771055)HNSF(07JJ3007)
文摘L^p- L^q decay estimate of solution to Cauchy problem of a linear thermoviscoelastic system is studied. By using a diagonalization argument of frequency analysis, the coupled system will be decoupled micrologically. Then with the help of the information of characteristic roots for the coefficient matrix of the system, L^p- L^q decay estimate of parabolic type of solution to the Cauchy problem is obtained.
基金Supported by the National Natural Science Foundation of China(11101121)
文摘We study the global existence of solution to one di- mensional convection-diffusion equation. Through constructing a Cauchy sequence in a Banach space, we get the local existence of solution to the equation, t3ased on the global bounds of the solu- tion, we extend the local one to a global one that decays in Hl space.
基金Supported by the Key Projects of Universities in Guangdong Province(NATURAL SCIENCE)(Grant No.2019KZDXM042)Research Team Project of Guangzhou Huashang College(Grant No.2021HSKT01).
文摘This paper investigates the spatial behavior of the solutions of the Stokes equations in a semi-infinite cylinder.We consider four kinds of semi-infinite cylinders with boundary conditions of Dirichlet type.For each type of cylinder we obtain the spatial decay estimates for the solutions.To make the attenuation meaningful,we derive the explicit bound for the total energy in terms of the initial boundary data.
基金Supported by the National Natural Science Foundation of China(11571092)
文摘This paper considers linearized BCL system with viscosity which is firstly derived by J. L. Bona, T. Colin and D. Lannes for the study of motion of water waves. Ldecay estimate is got by means of Fourier analysis and frequency decomposition. This result plays key role in studying the global well-posedness of corresponding nonlinear system.
基金H.G.Wu was supported by the National Science Foundation of China (11071057,10801015)China Postdoctoral Science Foundation (20100470570)+1 种基金the Guozhi Xu Posdoctoral Research FoundationDoctoral Foundation of Henan Polytechnic University
文摘In this paper,we study the decay estimate and scattering theory for the Klein-Gordon-Hartree equation with radial data in space dimension d≥3.By means of a compactness strategy and two Morawetz-type estimates which come from the linear and nonlinear parts of the equation,respectively,we obtain the corresponding theory for energy subcritical and critical cases.The exponent range of the decay estimates is extended to 0〈γ≤4 and γ〈d with Hartree potential V(x) =|x|-γ.
文摘In this paper, Saint-Venant's principle for anisotropic material in an end-loaded. semi-infinite elastic strip is established. Energy method is used to establish the lower bounds of the decay estimate of stress effect. An explicit estimate formula in terms of the elastic constants of the anisotropic materials is presented. Finally, a numerical example for an end-loaded, off-axis, graphite-epoxy strip is given to illustrate the results.
基金supported by the National Natural Science Foundation of China(12271296,12271195).
文摘This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.
文摘In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.
文摘We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an n-dimensional incompressible Navier-Stokes equations.We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.
基金partially supported by NSFC(No.12371136)partially supported by NSFC(No.12171182)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China。
文摘This paper is concerned with the time decay estimates of the fourth order Schrodinger operator H=o2+V(x)in dimension three,where V(x)is a real valued decaying potential.Assume that zero is a regular point or the first kind resonance of H,and H has no positive eigenvalues,we established the following time optimal decay estimates of e-itHwith a regular term Hα/4:||H^(α/4)e^(-it)P_(ac)(H)||L^(1)-L^(∞)■|t|^(-3+α/4),0≤α≤3When zero is the second or third kind resonance of H,their decay will be significantly changed.We remark that such improved time decay estimates with the extra regular term Hα/4will be interesting in the well-posedness and scattering of nonlinear fourth order Schrodinger equations with potentials.
文摘This paper investigates the decay properties of solutions to the Cauchy problem for viscoelastic nonlinear hyperbolic dissipative systems on R^(3).Due to the weak dissipation of the system,the decay estimate of solutions exhibits a loss of regularity,implying that a higher regularity of initial data is required for optimal decay rates compared to the global existence.The aim is to reduce the initial regularity to the lowest possible level to achieve the optimal decay rate.Based on the global existence,we employ energy methods,L^(p)-L^(q)-L^(r) estimates,and harmonic analysis tools to obtain the optimal decay result of solutions.
文摘The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.
基金This research is supported by "Foundation of office of overseas Chinese affair under the state council: 03QZR09"
文摘In this article, first, the authors prove that there exists a unique global smooth solution for the Cauthy problem to the hyperbolic conservation laws systems with relaxation; second, in the large time station, they prove that the global smooth solutions of the hyperbolic conservation laws systems with relaxation converge to rarefaction waves solution at a determined L^P(p ≥ 2) decay rate.
基金Supported by National Natural Science Foundation of China(11801145)Key Scientific Research Foundation of the Higher Education Institutions of Henan Province,China(Grant No.19A110004)and(2018GGJS068)。
文摘In this paper,we investigate the initial boundary value problem for a plate equation with nonlocal source term.The local,global existence and exponential decay result are established under certain conditions.Moreover,we also prove the blow-up in finite time and the lifespan of solution under certain conditions.
基金supported by the Scientific and Technological Project of jilin Province's Education Department in Thirteenth Five-Year(JKH20180111KI)supported by NSFC(11301211).
文摘We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic behavior of solutions,an inevitable step is to deal with the integralΩ|ut|^(m−2)utudx.A usual technique is to apply Young’s inequality and Sobolev embedding inequality to use the energy function and its derivative to control this integral for the subcritical or critical damping.However,for the supercritical case,the failure of the Sobolev embedding inequality makes the classical method be impossible.To do this,our strategy is to prove the rate of the integral RΩ|u|^(m)dx grows polynomially as a positive power of time variable t and apply the modified multiplier method to obtain the energy functional decays logarithmically.These results improve and extend our previous work[12].Finally,some numerical examples are also given to authenticate our results.