期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Debonding phenomenon of TiO_2 nanotube film 被引量:1
1
作者 邹俭鹏 WANG Ri-zhi 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2691-2699,共9页
Curvature method was used to measure the residual stress and substrate straining tensile test was carried out to study the debonding behavior of TiO2 nanotube film. The results indicate that the internal residual stre... Curvature method was used to measure the residual stress and substrate straining tensile test was carried out to study the debonding behavior of TiO2 nanotube film. The results indicate that the internal residual stress is -54 MPa. The strains of debonding initiation of TiO2 nanotube films without annealing, with 250 °C annealing and with 400 °C annealing are 2.6%, 5.1% and 8.6%, respectively, and the average radii of the debonding patches with debonding initiation are 27.5, 17.1 and 19.4 μm, respectively. The true critical debonding stresses of TiO2 nanotube films without annealing, with 250 °C annealing and with 400 °C annealing can be estimated as 220.4, 394.5 and 627.9 MPa, respectively. Interfacial shear lag model is modified and polynomial fitting equation of the interfacial shear strength of TiO2 nanotube film is demonstrated under debonding conditions. The modification and polynomial fitting are reliable since good agreement of the interfacial shear strengths after fitting is obtained compared with those results from the crack density analysis. 展开更多
关键词 TiO2 nanotube interfacial shear strength debonding behavior debonding density debonding radius internal residued stress
在线阅读 下载PDF
Effect of Chloride Content on Bond Behavior Between FRP and Concrete
2
作者 潘金龙 黄毅方 邢锋 《Transactions of Tianjin University》 EI CAS 2010年第6期405-410,共6页
For reinforced concrete structures located along the seaside, the penetration of chloride ions into concrete may be a threat to the durability of the structures. Experimental investigations were carried out to study t... For reinforced concrete structures located along the seaside, the penetration of chloride ions into concrete may be a threat to the durability of the structures. Experimental investigations were carried out to study the effect of chloride content on the bond behavior between concrete and fiber reinforced polymer (FRP) plates. Direct shear tests were conducted on the FRP strengthened concrete members. Before testing, the specimens were immersed in NaCl solutions with concentrations ranging from 3%—15% for di... 展开更多
关键词 fiber reinforced polymer (FRP) CONCRETE chloride content direct shear test debonding behavior
在线阅读 下载PDF
Analytical and Numerical Modelling of FRP Debonding from Concrete Substrate under Pure Shearing
3
作者 PAN Jinlong XU Zhun +1 位作者 C K Y Leung LI Zongjin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期142-148,共7页
External bonding of fiber reinforced polymer (FRP) composites on the concrete structures has been proved to be an effective and efficient way to strengthen concrete structures. For a FRP strengthened concrete beam, ... External bonding of fiber reinforced polymer (FRP) composites on the concrete structures has been proved to be an effective and efficient way to strengthen concrete structures. For a FRP strengthened concrete beam, it is usually observed that the failure occurs in the concrete and a thin layer of concrete is attached on the surface of the debonded FRP plate. To study the debond behavior between concrete and FRP composites, an analytical model based on the three-parameter model is developed to study the debonding behavior for the FRP-to-concrete joint under pure shearing. Then, nonlinear FEM analysis is conducted to verify the PrOposed analytical model. The FEM results shows good agreement with the results from the model. Finally, with the analytical model, sensitivity analyses are performed to study the effect of the interracial parameters or the ~eometric parameters on the debondin~ behavior. 展开更多
关键词 FRP composites debonding behavior analytical model nonlinear FEM analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部