This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) dire...This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.展开更多
The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis wa...The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis was based on a time series of three-dimensional and three-component (3D-3C) velocity fields of the flat plate turbulent boundary layer (TBL) measured by a Tomographic and Time-resolved PIV (Tomo TRPIV) system. Using multi-resolution wavelet transform and conditional sampling method, we extracted the intrinsic topologies and found that the streak structures appear in bar-like patterns. Furthermore, we seized locations and velocity information of transient CS, and then calculated the propagation velocity of CS based on spatial-temporal cross-correlation scanning. This laid a foundation for further studies on relevant dynamics properties.展开更多
Aiming to solve the misclassification problems of unsupervised polarimetric Wishart clas- sification algorithm based on Freeman decomposition, an unsupervised Polarimetric Synthetic Aper- ture Radar (SAR) Interferot...Aiming to solve the misclassification problems of unsupervised polarimetric Wishart clas- sification algorithm based on Freeman decomposition, an unsupervised Polarimetric Synthetic Aper- ture Radar (SAR) Interferotnery (PolInSAR) classification algorithm based on optimal coherence set parameters is studied and proposed. This algorithm uses the result of Freeman decomposition to divide the image into three basic categories including surface scattering, volume scattering, and double-bounce Then, the PolInSAR optimal coherence set parameters are used to finely divide each of the three basic categories into 9 categories, and the whole image is divided into 27 categories. Because both the Freeman decomposition result and optimal coherence set parameters indicate specific scattering characteristics, the whole image is merged into 16 categories based on physical meaning. At last, the Wishart cluster is employed to obtain the final classification result. To preserve the purity of scattering characteristics, pixels with similar scattering characteristics are restricted to be classified with other pixels. The final classification results effectively resolve the misclassification problem, not only the buildings can be effectively distinguished from vegetation in urban areas, but also the road is well distinguished from grass. In this paper, the E-SAR PolInSAR data of German Aerospace Center (DLR) are used to verify the effectiveness of the algorithm.展开更多
This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the Electrocardiogram (ECG) signal and recognition of three types of Ventricular Arrhythmias using neural networks. A se...This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the Electrocardiogram (ECG) signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. These coefficients are fed to the feed forward neural network which classifies the arrhythmias. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.展开更多
We propose a dual decomposition based algorithm that solves the AC optimal power flow(ACOPF) problem in the radial distribution systems and microgrids in a collaborative and distributed manner. The proposed algorithm ...We propose a dual decomposition based algorithm that solves the AC optimal power flow(ACOPF) problem in the radial distribution systems and microgrids in a collaborative and distributed manner. The proposed algorithm adopts the second-order cone program(SOCP) relaxed branch flow ACOPF model. In the proposed algorithm, bus-level agents collaboratively solve the global ACOPF problem by iteratively sharing partial variables with its 1-hop neighbors as well as carrying out local scalar computations that are derived using augmented Lagrangian and primal-dual subgradient methods. We also propose two distributed computing platforms, i. e., high-performance computing(HPC) based platform and hardware-in-theloop(HIL) testbed, to validate and evaluate the proposed algorithm. The computation and communication performances of the proposed algorithm are quantified and analyzed on typical IEEE test systems. Experimental results indicate that the proposed algorithm can be executed on a fully distributed computing structure and yields accurate ACOPF solution. Besides, the proposed algorithm has a low communication overhead.展开更多
基金supported by the National Natural Science Foundation of China (10776040 60602057)+4 种基金Program for New Century Excellent Talents in University (NCET)the Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003)the Natural Science Foundation of Chongqing Science and Technology Commission (CSTC2009BB2287)the Natural Science Foundation of Chongqing Municipal Education Commission (KJ060509 KJ080517)
文摘This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.
基金supported by the National Natural Science Foundation of China(11332006,11272233,and 11411130150)the National Basic Research Programm of China(2012CB720101)
文摘The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis was based on a time series of three-dimensional and three-component (3D-3C) velocity fields of the flat plate turbulent boundary layer (TBL) measured by a Tomographic and Time-resolved PIV (Tomo TRPIV) system. Using multi-resolution wavelet transform and conditional sampling method, we extracted the intrinsic topologies and found that the streak structures appear in bar-like patterns. Furthermore, we seized locations and velocity information of transient CS, and then calculated the propagation velocity of CS based on spatial-temporal cross-correlation scanning. This laid a foundation for further studies on relevant dynamics properties.
文摘Aiming to solve the misclassification problems of unsupervised polarimetric Wishart clas- sification algorithm based on Freeman decomposition, an unsupervised Polarimetric Synthetic Aper- ture Radar (SAR) Interferotnery (PolInSAR) classification algorithm based on optimal coherence set parameters is studied and proposed. This algorithm uses the result of Freeman decomposition to divide the image into three basic categories including surface scattering, volume scattering, and double-bounce Then, the PolInSAR optimal coherence set parameters are used to finely divide each of the three basic categories into 9 categories, and the whole image is divided into 27 categories. Because both the Freeman decomposition result and optimal coherence set parameters indicate specific scattering characteristics, the whole image is merged into 16 categories based on physical meaning. At last, the Wishart cluster is employed to obtain the final classification result. To preserve the purity of scattering characteristics, pixels with similar scattering characteristics are restricted to be classified with other pixels. The final classification results effectively resolve the misclassification problem, not only the buildings can be effectively distinguished from vegetation in urban areas, but also the road is well distinguished from grass. In this paper, the E-SAR PolInSAR data of German Aerospace Center (DLR) are used to verify the effectiveness of the algorithm.
文摘This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the Electrocardiogram (ECG) signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. These coefficients are fed to the feed forward neural network which classifies the arrhythmias. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.
基金supported by the National Science Foundation (No. CNS-1505633)。
文摘We propose a dual decomposition based algorithm that solves the AC optimal power flow(ACOPF) problem in the radial distribution systems and microgrids in a collaborative and distributed manner. The proposed algorithm adopts the second-order cone program(SOCP) relaxed branch flow ACOPF model. In the proposed algorithm, bus-level agents collaboratively solve the global ACOPF problem by iteratively sharing partial variables with its 1-hop neighbors as well as carrying out local scalar computations that are derived using augmented Lagrangian and primal-dual subgradient methods. We also propose two distributed computing platforms, i. e., high-performance computing(HPC) based platform and hardware-in-theloop(HIL) testbed, to validate and evaluate the proposed algorithm. The computation and communication performances of the proposed algorithm are quantified and analyzed on typical IEEE test systems. Experimental results indicate that the proposed algorithm can be executed on a fully distributed computing structure and yields accurate ACOPF solution. Besides, the proposed algorithm has a low communication overhead.