A distinctive feature of scholarly communities today is exploring topics and concepts in interdisciplinary and international contexts. This observation is increasingly apparent and visible in advancing our thinking an...A distinctive feature of scholarly communities today is exploring topics and concepts in interdisciplinary and international contexts. This observation is increasingly apparent and visible in advancing our thinking and policies related to human/environmental worlds at local, regional, and global scales. Maps are an important part of these innovative and ongoing research approaches. In this context, we consider urban forests a topic meriting more attention of scholars studying the geographic and environmental intersections of the natural sciences with the social sciences and humanities. We construct two innovative knowledge bases, one a conceptual framework based on major themes and concepts related to mapping urban forests using key words of the first 100 results of a Google Scholar query and a second using the number of Google Scholar hyperlinks about mapping urban forests in 244 capital cities. We discovered that the constructed world maps reveal vast global unevenness in our knowledge about urban forests in hyperlink numbers and ratios, results that merit further attention by disciplinary, international and interdisciplinary scholarly communities.展开更多
The characteristic databases in China face issues such as narrow resource coverage,low levels of standardization and normalization,and limited data sharing.To address these challenges,this paper proposes the concept o...The characteristic databases in China face issues such as narrow resource coverage,low levels of standardization and normalization,and limited data sharing.To address these challenges,this paper proposes the concept of characteristic databases alliance,using marine characteristic databases as a case for feasibility analysis and discussion.The paper outlines the development path for such alliances and offers recommendations for future growth,aiming to establish a collaborative platform for the development of characteristic databases.展开更多
Objectives:Electronic health records(EHRs)offer valuable real-world data(RWD)for Chinese medicine research.However,significant methodological challenges remain in developing integrative Chinese-Western medicine(ICWM)d...Objectives:Electronic health records(EHRs)offer valuable real-world data(RWD)for Chinese medicine research.However,significant methodological challenges remain in developing integrative Chinese-Western medicine(ICWM)databases.This study aims to establish a best-practice methodological framework,referred to as BRIDGE,to guide the construction of ICWM databases using EHRs.Methods:We developed the methodological framework through a comprehensive process,including systematic literature review,synthesis of empirical experiences,thematic expert discussions,and consultation with an external panel to reach consensus.Results:The BRIDGE framework outlines 6 core components for ICWM-EHR database development:Overall design,database architecture,data extraction and linkage,data governance,data verification,and data quality evaluation.Key data elements include variables related to study population,treatment or exposure,outcomes,and confounders.These databases support various research applications,particularly in evaluating the effectiveness and safety of integrative therapies.To demonstrate its practical value,we developed an ICWM-EHR database on women’s reproductive lifespan,encompassing 2,064,482 patients.This database captures women’s health conditions across the life course,from reproductive age to older adulthood.Conclusions:The BRIDGE methodological framework provides a standardized approach to building high-quality ICWM-EHR databases.It offers a unique opportunity to strengthen the methodological rigor and real-world relevance of Chinese medicine research in integrated healthcare settings.展开更多
The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,...The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,and CNKI,as well as Library of Congress,United States.展开更多
The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,...The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,and CNKI,as well as Library of Congress,United States.展开更多
AI-driven materials databases are transforming research by integrating experimental and computational data to enhance discovery and optimization.Platforms such as Digital Catalysis Platform(DigCat)and Dynamic Database...AI-driven materials databases are transforming research by integrating experimental and computational data to enhance discovery and optimization.Platforms such as Digital Catalysis Platform(DigCat)and Dynamic Database of Solid-State Electrolyte(DDSE)demonstrate how machine learning and predictive modeling can improve catalyst and solid-state electrolyte development.These databases facilitate data standardization,high-throughput screening,and cross-disciplinary collaboration,addressing key challenges in materials informatics.As AI techniques advance,materials databases are expected to play an increasingly vital role in accelerating research and innovation.展开更多
The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significan...The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.展开更多
The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users wit...The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users with the right to issue a Data Subject Access Request(DSAR).Responding to such requests requires database administrators to identify information related to an individual accurately.However,manual compliance poses significant challenges and is error-prone.Database administrators need to write queries through time-consuming labor.The demand for large amounts of data by AI systems has driven the development of NoSQL databases.Due to the flexible schema of NoSQL databases,identifying personal information becomes even more challenging.This paper develops an automated tool to identify personal information that can help organizations respond to DSAR.Our tool employs a combination of various technologies,including schema extraction of NoSQL databases and relationship identification from query logs.We describe the algorithm used by our tool,detailing how it discovers and extracts implicit relationships from NoSQL databases and generates relationship graphs to help developers accurately identify personal data.We evaluate our tool on three datasets,covering different database designs,achieving an F1 score of 0.77 to 1.Experimental results demonstrate that our tool successfully identifies information relevant to the data subject.Our tool reduces manual effort and simplifies GDPR compliance,showing practical application value in enhancing the privacy performance of NOSQL databases and AI systems.展开更多
Ancient China recorded a wealth of astronomical observations,notably distinguished by the inclusion of empirical measurements of stellar observations.However,determining the precise observational epochs for these data...Ancient China recorded a wealth of astronomical observations,notably distinguished by the inclusion of empirical measurements of stellar observations.However,determining the precise observational epochs for these datasets poses a formidable challenge.This study employs the generalized Hough transform methodology to analyze two distinct sets of observational data originating from the Song and Yuan dynasties,allowing accurate estimation of the epochs of these stellar observations.This research introduces a novel and systematic approach,offering a scholarly perspective for the analysis of additional datasets within the domain of ancient astronomical catalogs in future investigations.展开更多
Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method...Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management.展开更多
Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new mater...Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.展开更多
文摘A distinctive feature of scholarly communities today is exploring topics and concepts in interdisciplinary and international contexts. This observation is increasingly apparent and visible in advancing our thinking and policies related to human/environmental worlds at local, regional, and global scales. Maps are an important part of these innovative and ongoing research approaches. In this context, we consider urban forests a topic meriting more attention of scholars studying the geographic and environmental intersections of the natural sciences with the social sciences and humanities. We construct two innovative knowledge bases, one a conceptual framework based on major themes and concepts related to mapping urban forests using key words of the first 100 results of a Google Scholar query and a second using the number of Google Scholar hyperlinks about mapping urban forests in 244 capital cities. We discovered that the constructed world maps reveal vast global unevenness in our knowledge about urban forests in hyperlink numbers and ratios, results that merit further attention by disciplinary, international and interdisciplinary scholarly communities.
文摘The characteristic databases in China face issues such as narrow resource coverage,low levels of standardization and normalization,and limited data sharing.To address these challenges,this paper proposes the concept of characteristic databases alliance,using marine characteristic databases as a case for feasibility analysis and discussion.The paper outlines the development path for such alliances and offers recommendations for future growth,aiming to establish a collaborative platform for the development of characteristic databases.
基金supported by the National Key Research&Development Program of China(No.2024YFC3505800)the National Natural Science Foundation of China(Nos.82474334,82474335 and 72174132)+3 种基金National Science Fund for Distinguished Young Scholars(No.82225049)the Key Research&Development Projects of Sichuan Provincial Department of Science and Technology(Nos.2024YFFK0174 and 2024YFFK0152)1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Nos.ZYYC24010 and ZYGD23004)the Special Fund for Traditional Chinese Medicine of Sichuan Provincial Administration of Traditional Chinese Medicine(No.2024zd023).
文摘Objectives:Electronic health records(EHRs)offer valuable real-world data(RWD)for Chinese medicine research.However,significant methodological challenges remain in developing integrative Chinese-Western medicine(ICWM)databases.This study aims to establish a best-practice methodological framework,referred to as BRIDGE,to guide the construction of ICWM databases using EHRs.Methods:We developed the methodological framework through a comprehensive process,including systematic literature review,synthesis of empirical experiences,thematic expert discussions,and consultation with an external panel to reach consensus.Results:The BRIDGE framework outlines 6 core components for ICWM-EHR database development:Overall design,database architecture,data extraction and linkage,data governance,data verification,and data quality evaluation.Key data elements include variables related to study population,treatment or exposure,outcomes,and confounders.These databases support various research applications,particularly in evaluating the effectiveness and safety of integrative therapies.To demonstrate its practical value,we developed an ICWM-EHR database on women’s reproductive lifespan,encompassing 2,064,482 patients.This database captures women’s health conditions across the life course,from reproductive age to older adulthood.Conclusions:The BRIDGE methodological framework provides a standardized approach to building high-quality ICWM-EHR databases.It offers a unique opportunity to strengthen the methodological rigor and real-world relevance of Chinese medicine research in integrated healthcare settings.
文摘The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,and CNKI,as well as Library of Congress,United States.
文摘The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,and CNKI,as well as Library of Congress,United States.
文摘AI-driven materials databases are transforming research by integrating experimental and computational data to enhance discovery and optimization.Platforms such as Digital Catalysis Platform(DigCat)and Dynamic Database of Solid-State Electrolyte(DDSE)demonstrate how machine learning and predictive modeling can improve catalyst and solid-state electrolyte development.These databases facilitate data standardization,high-throughput screening,and cross-disciplinary collaboration,addressing key challenges in materials informatics.As AI techniques advance,materials databases are expected to play an increasingly vital role in accelerating research and innovation.
文摘The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.
基金supported by the National Natural Science Foundation of China(No.62302242)the China Postdoctoral Science Foundation(No.2023M731802).
文摘The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users with the right to issue a Data Subject Access Request(DSAR).Responding to such requests requires database administrators to identify information related to an individual accurately.However,manual compliance poses significant challenges and is error-prone.Database administrators need to write queries through time-consuming labor.The demand for large amounts of data by AI systems has driven the development of NoSQL databases.Due to the flexible schema of NoSQL databases,identifying personal information becomes even more challenging.This paper develops an automated tool to identify personal information that can help organizations respond to DSAR.Our tool employs a combination of various technologies,including schema extraction of NoSQL databases and relationship identification from query logs.We describe the algorithm used by our tool,detailing how it discovers and extracts implicit relationships from NoSQL databases and generates relationship graphs to help developers accurately identify personal data.We evaluate our tool on three datasets,covering different database designs,achieving an F1 score of 0.77 to 1.Experimental results demonstrate that our tool successfully identifies information relevant to the data subject.Our tool reduces manual effort and simplifies GDPR compliance,showing practical application value in enhancing the privacy performance of NOSQL databases and AI systems.
文摘Ancient China recorded a wealth of astronomical observations,notably distinguished by the inclusion of empirical measurements of stellar observations.However,determining the precise observational epochs for these datasets poses a formidable challenge.This study employs the generalized Hough transform methodology to analyze two distinct sets of observational data originating from the Song and Yuan dynasties,allowing accurate estimation of the epochs of these stellar observations.This research introduces a novel and systematic approach,offering a scholarly perspective for the analysis of additional datasets within the domain of ancient astronomical catalogs in future investigations.
基金financial support from Teesside University to support the Ph.D.programme of the first author.
文摘Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61888102,52272172,and 52102193)the Major Program of the National Natural Science Foundation of China(Grant No.92163206)+2 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1201501 and 2022YFA1204100)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universities.
文摘Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.