期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
数据-模型融合驱动的高倍率短时脉冲电池模型
1
作者 要宇辉 孙丙香 +4 位作者 张慧敏 马仕昌 赵鑫泽 鲁诗默 朱振威 《电池》 北大核心 2025年第2期232-237,共6页
高倍率短时脉冲工况下,电池的极化特性差异大、温度上升快、极化电压消退不彻底,导致常规等效电路模型仿真效果不佳。参数辨识和分段均方误差分析发现,高倍率脉冲工况下模型在极化消退部分仿真误差较大,导致下一脉冲极化电压初始值失准... 高倍率短时脉冲工况下,电池的极化特性差异大、温度上升快、极化电压消退不彻底,导致常规等效电路模型仿真效果不佳。参数辨识和分段均方误差分析发现,高倍率脉冲工况下模型在极化消退部分仿真误差较大,导致下一脉冲极化电压初始值失准。提出基于一阶等效电路模型和前馈神经网络的数据-模型融合驱动模型。相较于常规等效电路模型,该模型在20 C的短时脉冲工况下,能更精确地模拟电池的电压响应,均方根误差降低了61.29%。 展开更多
关键词 锂离子电池 高倍率短时脉冲工况 等效电路模型 前馈神经网络 数据-模型融合驱动模型
在线阅读 下载PDF
机理与数据融合驱动的复杂航空复材部件关键装配误差元素辨识方法
2
作者 郭飞燕 张辉 +1 位作者 宋长杰 张硕 《中国机械工程》 北大核心 2025年第7期1530-1543,共14页
复杂航空复材产品的装配中,考虑零件受力变形、多装配参数等因素,建立定位装夹、连接、下架回弹等关键装配环节的变形误差源模型,修正表示误差传递关系的雅可比旋量矩阵,构建装配误差传递机理模型;建立以装配误差为基础的支持向量回归模... 复杂航空复材产品的装配中,考虑零件受力变形、多装配参数等因素,建立定位装夹、连接、下架回弹等关键装配环节的变形误差源模型,修正表示误差传递关系的雅可比旋量矩阵,构建装配误差传递机理模型;建立以装配误差为基础的支持向量回归模型,构建机理模型与数据模型的融合模型;依据装配误差机理模型计算值与实际偏差的预测补偿模型,采用Sobol灵敏度分析方法计算不同误差元素的全局灵敏度系数,辨识了对装配精度影响较大的关键误差元素。最后,以某机翼盒段装配为例验证了所提方法的有效性。 展开更多
关键词 机理模型 数据驱动 灵敏度分析 机理-数据融合建模 复材装配
在线阅读 下载PDF
过程工业软测量中的多模型融合建模方法 被引量:11
3
作者 王海宁 夏陆岳 +2 位作者 周猛飞 朱鹏飞 潘海天 《化工进展》 EI CAS CSCD 北大核心 2014年第12期3157-3163,共7页
对多模型融合建模方法在过程工业软测量中的研究进展进行了系统总结。根据整体模型中子模型的不同,多模型融合建模方法主要可分成数据驱动融合建模方法和半参数建模方法。详细介绍了数据驱动融合建模方法和半参数建模方法的设计思想和... 对多模型融合建模方法在过程工业软测量中的研究进展进行了系统总结。根据整体模型中子模型的不同,多模型融合建模方法主要可分成数据驱动融合建模方法和半参数建模方法。详细介绍了数据驱动融合建模方法和半参数建模方法的设计思想和国内外研究现状,分析了各类方法的优缺点,并提出了相应的改进方向。根据过程数据处理方法的不同,将数据驱动融合建模方法分为集成学习和聚类分析。根据模型结构形式的不同,将半参数建模方法分为串联结构和并联结构。最后对多模型融合建模方法的未来研究方向进行了展望,期望今后的研究工作能在改进数据驱动模型融合技术、提高半参数模型外推能力和解决双率数据问题等方面取得突破性进展,并指出采用多模型融合建模方法建立基于多源信息融合的软测量模型是实现过程工业中难测变量在线估计的有效方法。 展开更多
关键词 软测量 多模型融合 数据驱动融合 半参数 建模
在线阅读 下载PDF
基于灰色关联法的月降雨量预测 被引量:4
4
作者 孙晓婷 任刚红 +2 位作者 杜坤 冯燕 周明 《灌溉排水学报》 CSCD 北大核心 2019年第1期90-95,共6页
【目的】提高降雨量预测精度,为农业、水利等相关部门提供决策依据。【方法】鉴于月降雨量时间序列具有显著的多尺度特征,开展了数据驱动下基于模型融合的月降雨量预测研究,应用灰色EGM(1,1)模型和自适应模糊神经网络系统(ANFIS)分别预... 【目的】提高降雨量预测精度,为农业、水利等相关部门提供决策依据。【方法】鉴于月降雨量时间序列具有显著的多尺度特征,开展了数据驱动下基于模型融合的月降雨量预测研究,应用灰色EGM(1,1)模型和自适应模糊神经网络系统(ANFIS)分别预测了年尺度与月尺度下的月降雨量,采用灰色关联法将2个预测结果进行数据融合。利用澳大利亚维多利亚8个站点降雨数据验证所提出方法,并将预测结果进行了与单一灰色EGM(1,1)、ANFIS、人工神经网络(ANN)、自回归积分滑动平均模型(ARIMA)与聚类回归法(CLR)模型预测结果对比。【结果】模型融合预测结果精度高于单一EGM(1,1)、ANFIS、ANN及ARIMA模型预测结果,并在8个站点中的5个取得了最佳预测效果,其中中部地区(Ballarat和Cape Otway站点)及东部地区(Dookie,Wangaratta和Orbost站)预测均方根误差为28.2~37.2 mm,西部地区(Dimboola,Edenhope和Dunkeld站点)预测均方根误差为20.8~23.4 mm。【结论】所提出的模型融合预测法可行,为月降雨量预测提供了新思路。 展开更多
关键词 月降雨量预测 数据驱动 模型融合 自适应模糊神经网络系统 灰色预测模型
在线阅读 下载PDF
基于融合模型的柴油机空气管理系统故障诊断 被引量:6
5
作者 王英敏 《科学技术与工程》 北大核心 2020年第25期10280-10286,共7页
柴油机作为重要的动力机械,其性能监测和故障诊断得到重视。而柴油机空气管理系统故障包括进气系统漏气、堵塞和废气再循环(EGR)阀卡涩等,故障将会导致排放恶化和经济性下降。针对空气管理系统具有较强的非线性,无法建立精确的数学模型... 柴油机作为重要的动力机械,其性能监测和故障诊断得到重视。而柴油机空气管理系统故障包括进气系统漏气、堵塞和废气再循环(EGR)阀卡涩等,故障将会导致排放恶化和经济性下降。针对空气管理系统具有较强的非线性,无法建立精确的数学模型等问题,建立了基于数学模型和数据驱动模型的融合模型,针对进气歧管漏气、中冷器堵塞,EGR阀卡滞等故障进行诊断研究。采用机理建模的方法建立EGR流量模型、充气系数模型和基于数据驱动建模的方法建立充气系数模型、进气压力波动幅值模型,利用奇偶方程法进行残差生成器的设计并生成三个残差信号,通过仿真分析可得到故障和残差值之间的映射矩阵,最后,采用模糊推理的方法进行故障诊断。研究结果表明:所构建的故障诊断系统能准确地诊断出空气管理系统的漏气直径为5 mm、堵塞至进气流量减少10%和EGR阀卡滞故障在关闭状态。 展开更多
关键词 空气管理系统 数学模型 数据驱动 融合模型 奇偶方程 结构化残差 故障诊断
在线阅读 下载PDF
含电-气-热耦合系统的微电网频率安全评估 被引量:5
6
作者 陈哲 邓宝华 +1 位作者 金建新 张有兵 《电力系统及其自动化学报》 CSCD 北大核心 2022年第6期61-70,共10页
为实现综合能源系统中能源子系统日益耦合背景下电力网络频率的精准评估,本文采用一种基于解析模型与数据驱动模型的融合建模方法。该方法利用解析模型对系统各种运行状态下的频率性能指标进行粗略计算,并将粗略计算结果与历史样本重构... 为实现综合能源系统中能源子系统日益耦合背景下电力网络频率的精准评估,本文采用一种基于解析模型与数据驱动模型的融合建模方法。该方法利用解析模型对系统各种运行状态下的频率性能指标进行粗略计算,并将粗略计算结果与历史样本重构为新的样本数据。数据驱动模型则通过深度神经网络架构建立新样本输入和输出之间的非线性映射关系,并引入降噪自动编码器算法实现网络参数的优化。与传统机器学习方法不同,经由解析模型作用后的数据驱动模型不仅考虑了实际复杂电力系统的物理模型知识,也进一步提高了系统频率的评估精度,使评估结果为系统的经济调度方案提供了数据参考。 展开更多
关键词 综合能源系统 融合建模 解析方法 数据驱动模型 频率性能指标 随机故障
在线阅读 下载PDF
Estimating potential yield of wheat production in China based on cross-scale data-model fusion 被引量:8
7
作者 Zhan TIAN Honglin ZHONG +3 位作者 Runhe SHI Laixiang SUN Gunther FISCHER Zhuoran LIANG 《Frontiers of Earth Science》 SCIE CAS CSCD 2012年第4期364-372,共9页
The response of the agro-ecological system to the environment includes the response of individual crop's physiologic process and the adaption of the crop commu- nity to the environment. Observation and simulation at ... The response of the agro-ecological system to the environment includes the response of individual crop's physiologic process and the adaption of the crop commu- nity to the environment. Observation and simulation at the single scale level cannot fully explain the above process. It is necessary to develop cross-scale agro-ecological models and study the interaction of agro-ecological processes across different scales. In this research, two typical agro- ecological models, the Decision Support System for Agro- technology Transfer (DSSAT) model and the Agro- ecological Zone (AEZ) model, are employed, and a framework for effective cross-scale data-model fusion is proposed and illustrated. The national observed data from 36 different agricultural observation stations and historical weather stations (1962-1999) are employed to estimate average crop productivity. Comparison of the two models' estimations are consistent, which would indicate the possibility ofcross-scale crop model fusion. 展开更多
关键词 DSSAT model AEZ model data-model fusion agro-ecological system
原文传递
Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle 被引量:17
8
作者 CAO Mingkui YU Guirui LIU Jiyuan LI Kerang 《Science China Earth Sciences》 SCIE EI CAS 2005年第z1期17-32,共16页
To predict global climate change and to implement the Kyoto Protocol for stabilizing atmospheric greenhouse gases concentrations require quantifying spatio-temporal variations in the terrestrial carbon sink accurately... To predict global climate change and to implement the Kyoto Protocol for stabilizing atmospheric greenhouse gases concentrations require quantifying spatio-temporal variations in the terrestrial carbon sink accurately. During the past decade multi-scale ecological experiment and observation networks have been established using various new technologies (e.g. controlled environmental facilities, eddy covariance techniques and quantitative remote sensing), and have obtained a large amount of data about terrestrial ecosystem carbon cycle. However, uncertainties in the magnitude and spatio-temporal variations of the terrestrial carbon sink and in understanding the underlying mechanisms have not been reduced significantly. One of the major reasons is that the observations and experiments were conducted at individual scales independently, but it is the interactions of factors and processes at different scales that determine the dynamics of the terrestrial carbon sink. Since experiments and observations are always conducted at specific scales, to understand cross-scale interactions requires mechanistic analysis that is best to be achieved by mechanistic modeling. However, mechanistic ecosystem models are mainly based on data from single-scale experiments and observations and hence have no capacity to simulate mechanistic cross-scale interconnection and interactions of ecosystem processes. New-generation mechanistic ecosystem models based on new ecological theoretical framework are needed to quantify the mechanisms from micro-level fast eco-physiological responses to macro-level slow acclimation in the pattern and structure in disturbed ecosystems. Multi-scale data-model fusion is a recently emerging approach to assimilate multi-scale observational data into mechanistic, dynamic modeling, in which the structure and parameters of mechanistic models for simulating cross-scale interactions are optimized using multi-scale observational data. The models are validated and evaluated at different spatial and temporal scales and real-time observational data are assimilated continuously into dynamic modeling for predicting and forecasting ecosystem changes realistically. in summary, a breakthrough in terrestrial carbon sink research requires using approaches of multi-scale observations and cross-scale modeling to understand and quantify interconnections and interactions among ecosystem processes at different scales and their controls over ecosystem carbon cycle. 展开更多
关键词 global CLIMATE change TERRESTRIAL carbon sink MULTI-SCALE observation data-model fusion cross-scale MECHANISTIC modeling.
原文传递
Spatial patterns of ecosystem carbon residence time in Chinese forests 被引量:5
9
作者 ZHOU Tao1,2, SHI PeiJun1,2, JIA GenSuo3, LI XiuJuan1,2 & LUO YiQi4 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China 2 Academy of Disaster Reduction and Emergency Management, Ministry of Civil Affairs & Ministry of Education, Beijing 100875, China +1 位作者 3 Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Chinese Academy of Sciences, Beijing 100029, China 4 Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA 《Science China Earth Sciences》 SCIE EI CAS 2010年第8期1229-1240,共12页
Capacity of carbon sequestration in forest ecosystem largely depends on the trend of net primary production (NPP) and the length of ecosystem carbon residence time. Retrieving spatial patterns of ecosystem carbon resi... Capacity of carbon sequestration in forest ecosystem largely depends on the trend of net primary production (NPP) and the length of ecosystem carbon residence time. Retrieving spatial patterns of ecosystem carbon residence time is important and necessary for accurately predicting regional carbon cycles in the future. In this study, a data-model fusion method that combined a process-based regional carbon model (TECO-R) with various ground-based ecosystem observations (NPP, biomass, and soil organic carbon) and auxiliary data sets (NDVI, meteorological data, and maps of vegetation and soil texture) was applied to estimate spatial patterns of ecosystem carbon residence time in Chinese forests at steady state. In the data-model fusion, the genetic algorithm was used to estimate the optimal model parameters related with the ecosystem carbon residence time by minimizing total deviation between modeled and observed values. The results indicated that data-model fusion technology could effectively retrieve model parameters and simulate carbon cycling processes for Chinese forest ecosystems. The estimated carbon residence times were highly heterogenous over China, with most of regions having values between 24 and 70 years. The deciduous needleleaf forest and the evergreen needleleaf forest had the highest averaged carbon residence times (73.8 and 71.3 years, respectively), the mixed forest and the deciduous broadleaf forest had moderate values (38.1 and 37.3 years, respectively), and the evergreen broadleaf forest had the lowest value (31.7 years). The averaged carbon residence time of forest ecosystems in China was 57.8 years. 展开更多
关键词 CARBON RESIDENCE time CARBON cycle forest ECOSYSTEM data-model fusion INVERSE modeling GENETIC algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部