Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorpt...Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.展开更多
Twisted and coiled polymer actuator(TCPA)is a type of artificial muscle that can be driven by heating due to its structure.A key issue with TCPA performance is the low driven frequency due to slow heat transfer in hea...Twisted and coiled polymer actuator(TCPA)is a type of artificial muscle that can be driven by heating due to its structure.A key issue with TCPA performance is the low driven frequency due to slow heat transfer in heating and cooling cycles,especially during cooling.We developed a numerical model of coating heating and nitrogen gas cooling that can effectively improve the driven forces and frequencies of the TCPA.Results indicate that natural cooling and electric fan cooling modes used in many experiments cannot restore the TCPA to its initial configuration when driven frequencies are high.Nitrogen gas cooling,at high driven frequencies,can fully restore the TCPA to its initial configuration,which is crucial for maintaining artificial muscle flexibility.In addition,as driven frequency increases,the corresponding driven force decreases.Systematic parametric studies were carried out to provide inspirations for optimizing TCPA design.The integrative computational study presented here provides a fundamental mechanistic understanding of the driven response in TCPA and sheds light on the rational design of TCPA through changing cooling modes.展开更多
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can b...PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
The increasing scale and complexity of 3D scene design work urge an efficient way to understand the design in multi-disciplinary team and exploit the experiences and underlying knowledge in previous works for reuse.Ho...The increasing scale and complexity of 3D scene design work urge an efficient way to understand the design in multi-disciplinary team and exploit the experiences and underlying knowledge in previous works for reuse.However the previous researches lack of concerning on relationship maintaining and design reuse in knowledge level.We propose a novel semantic driven design reuse system,including a property computation algorithm that enables our system to compute the properties while modeling process to maintain the semantic consistency,and a vertex statics based algorithm that enables the system to recognize scene design pattern as universal semantic model for the same type of scenes.With the universal semantic model,the system conducts the modeling process of future design works by suggestions and constraints on operation.The proposed framework empowers the reuse of 3D scene design on both model level and knowledge level.展开更多
In industrial environment,heat sources often are contaminant sources and health threatening contaminants are mainly passive,so a detailed understanding of airflow mode can assist in work environment hygiene measuremen...In industrial environment,heat sources often are contaminant sources and health threatening contaminants are mainly passive,so a detailed understanding of airflow mode can assist in work environment hygiene measurement and prevention.This paper presented a numerical investigation of stratified airflow scenario in a high-space industrial hall with validated commercial code and experimentally acquired boundary conditions.Based upon an actually undergoing engineering project,this study investigated the performance of the buoyancy-driven displacement ventilation in a large welding hall with big components manufactured.The results have demonstrated that stratified airflow sustained by thermal buoyancy provides zoning effect in terms of clean and polluted regions except minor stagnant eddy areas.The competition between negative buoyant jets from displacement radial diffusers and positive buoyant plume from bulk object constitutes the complex transport characteristics under and above stratification interface.Entrainment,downdraft and turbulent eddy motion complicate the upper mixing zone,but the exhaust outlet plays a less important role in the whole field flow.And the corresponding suggestions concerning computational stability and convergence,further improvements in modelling and measurements were given.展开更多
When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency...When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design.展开更多
Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nea...Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nearshore) model is used to calculate wave field and the input wind field is the QSCAT/NCEP (Quick Scatterometer/National Centers for Environmental Prediction) data. The two-dimensional wavelet transform is applied to analyze the X-band radar image of nearshore wave field and it reveals that the observed wave spectrum has shoaling characteristics in frequency domain. The reverse calculation approach of wave spectrum in deep water is proposed and validated with experimental tests. The two-dimensional digital low-pass filter is used to obtain the initialization wave field. Wave data during Typhoon Sinlaku is used to calibrate the data assimilation parameters and test the reverse calculation approach. Data assimilation corrects the significant wave height and the low frequency spectra energy evidently at Beishuang Station along Fujian Province coast, where the entire assimilation indexes are positive in verification moments. The nowcasting wave field shows that the present model can obtain more accurate wave predictions for coastal and ocean engineering in Southeast China Sea.展开更多
The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d...The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.展开更多
Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangentp...Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangentpulse driven model and demonstrate that it indicates a desirable design, i.e., of being both fast and accurate for population transfer. As opposed to other existing strategies, a remarkable character of the present scheme is that high velocity of the nonadiabatic evolution itself not only will not lead to unwanted transitions but also can suppress the error caused by the truncation of the driving pulse.展开更多
Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and autom...Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and automating code generation from the models. Model Driven Software Development (MDSD) offers significantly more effective approaches. These approaches improve the way of building software. Model driven approaches partially increase developer productivity, decrease the cost of software construction, improve software reusability, and make software more maintainable. This paper investigates the methods where Model Driven Software Development is integrated with Software Product Line (SPL). This SLR has been conducted to identify 71 research works published since 2014. We have collected 18 tools, 14 techniques and 17 languages used for MDSD for SPL. We analyze which technique is suitable for SPL. We compare the techniques on the basis of features provided by these tools to understand the better-quality results.展开更多
The IEC 61131-3 standard defines a model and a set of programming languages for the development of industrial automation software. It is widely accepted by industry and most of the commercial tool vendors advertise co...The IEC 61131-3 standard defines a model and a set of programming languages for the development of industrial automation software. It is widely accepted by industry and most of the commercial tool vendors advertise compliance with it. On the other side, Model Driven Development (MDD) has been proved as a quite successful paradigm in general-purpose computing. This was the motivation for exploiting the benefits of MDD in the industrial automation domain. With the emerging IEC 61131 specification that defines an object-oriented (OO) extension to the function block model, there will be a push to the industry to better exploit the benefits of MDD in automation systems development. This work discusses possible alternatives to integrate the current but also the emerging specification of IEC 61131 in the model driven development process of automation systems. IEC 61499, UML and SysML are considered as possible alternatives to allow the developer to work in higher layers of abstraction than the one supported by IEC 61131 and to more effectively move from requirement specifications into the implementation model of the system.展开更多
To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowle...To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
The pressure-driven mold filling ability of aluminum alloy melt/semi-solid slurry is of great significance in pressure casting processes,and the rheological behavior of the alloy has a crucial effect on the mold filli...The pressure-driven mold filling ability of aluminum alloy melt/semi-solid slurry is of great significance in pressure casting processes,and the rheological behavior of the alloy has a crucial effect on the mold filling ability according to fluid dynamics.In this work,a pressure-driven mold filling model is first proposed based on the rheological behavior of the alloys.A356 alloy is employed as an example to clarify the rheological behavior of aluminum alloys,which obeys the power law model and is affected by temperature.The rheological behavior of the alloy in semi-solid state is modelled with the coupling of shear rate and temperature.The stop of mold filling attributes to the pressure loss which is caused by the viscosity during the flow of the melt/semi-solid slurry.Pressure loss caused by viscous flow and heat transfer between the alloy and the mold are calculated and coupled during the mold filling of the melt/semi-solid slurry.A pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry is established based on steady-state rheological behavior.The model successfully predicts the filling length of melt/semi-solid slurry in pressure casting processes.Compared with the experimental results,the model can provide a quantitative approach to characterize the pressure-driven mold filling ability of aluminum alloy melt.The model is capable of describing the stop filling behavior of other aluminum alloys in pressure casting processes with corresponding rheological parameters and heat transfer coefficient.展开更多
Battlefield environment simulation process is an important part of battlefield environment information support, which needs to be built around the task process. At present, the interoperability between battlefield env...Battlefield environment simulation process is an important part of battlefield environment information support, which needs to be built around the task process. At present, the interoperability between battlefield environment simulation system and command and control system is still imperfect, and the traditional simulation data model cannot meet war fighters’ high-efficient and accurate understanding and analysis on battlefield environment’s information. Therefore, a kind of task-orientated battlefield environment simulation process model needs to be construed to effectively analyze the key information demands of the command and control system. The structured characteristics of tasks and simulation process are analyzed, and the simulation process concept model is constructed with the method of object-orientated. The data model and formal syntax of GeoBML are analyzed, and the logical model of simulation process is constructed with formal language. The object data structure of simulation process is defined and the object model of simulation process which maps tasks is constructed. In the end, the battlefield environment simulation platform modules are designed and applied based on this model, verifying that the model can effectively express the real-time dynamic correlation between battlefield environment simulation data and operational tasks.展开更多
Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode inc...Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode includes a calculation-independent model ( CIM ), a platform-independent model ( PIM ), a platform-specific model (PSM) and a code level. Based on this mode, the modeling architecture of CIM level is presented. CIM here includes a global model, a process model, an information model and an organization model. The modeling elements of global model, process recta-model, information recta-model and organization meta-model are defined in detail and the relationship between them is described. The reflecting relationship between these models is established as well.展开更多
Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
Oil spills can generate multiple effects in different time scales on the marine ecosystem. The numerical modeling of these processes is an important tool with low computational cost which provides a powerful appliance...Oil spills can generate multiple effects in different time scales on the marine ecosystem. The numerical modeling of these processes is an important tool with low computational cost which provides a powerful appliance to environmental agencies regarding the risk management. In this way, the objective of this work is to evaluate the influence of a number of physical forcing acting over a hypothetical oil spill along the Southern Brazilian Shelf. The numerical simulation was carried out using the ECOS model (Easy Coupling Oil System), an oil spill model developed at the Universidade Federal do Rio Grande—FURG, coupled with the tridimensional hydrodynamic model TELEMAC3D (EDF, France). The hydrodynamic model provides the current velocity, salinity and temperature fields used by the oil spill model to evaluate the behavior and the fate of the spilled oil. The results suggest that the local wind influence is the main forcing driven the fate of the spilled oil, and this forcing responds for more than 60% of the oil slick variability. The direction and intensity of the costal currents control between 20% and 40% of the oil variability, and the currents are important controlling the behavior and the tridimensional transportation of the oil. On the other hand, the turbulent diffusion is important for the horizontal drift of the oil. The weathering results indicate 40% of evaporation and 80% of emulsification, and the combination of these processes leads an increasing of the oil density around, 53.4 kg/m3 after 5 days of simulation.展开更多
基金RPSEA and U.S.Department of Energy for partially funding this study
文摘Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.
基金Natural Science Foundation of China,11925204,Jizeng Wangthe Fundamental Research Funds for the Central Universities,lzujbky-2024-jdzx02,Zhiwen Gao。
文摘Twisted and coiled polymer actuator(TCPA)is a type of artificial muscle that can be driven by heating due to its structure.A key issue with TCPA performance is the low driven frequency due to slow heat transfer in heating and cooling cycles,especially during cooling.We developed a numerical model of coating heating and nitrogen gas cooling that can effectively improve the driven forces and frequencies of the TCPA.Results indicate that natural cooling and electric fan cooling modes used in many experiments cannot restore the TCPA to its initial configuration when driven frequencies are high.Nitrogen gas cooling,at high driven frequencies,can fully restore the TCPA to its initial configuration,which is crucial for maintaining artificial muscle flexibility.In addition,as driven frequency increases,the corresponding driven force decreases.Systematic parametric studies were carried out to provide inspirations for optimizing TCPA design.The integrative computational study presented here provides a fundamental mechanistic understanding of the driven response in TCPA and sheds light on the rational design of TCPA through changing cooling modes.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50835006 and 51005161)the Science & Technology Support Planning Foundation of Tianjin(Grant No. 09ZCKFGX03000)the Natural Science Foundation of Tianjin(Grant No. 09JCZDJC23400)
文摘PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金the National Natural Science Foundation of China(Nos.61073086 and 70871078)the National High Technology Research and Development Program (863) of China(No.2008AA04Z126)
文摘The increasing scale and complexity of 3D scene design work urge an efficient way to understand the design in multi-disciplinary team and exploit the experiences and underlying knowledge in previous works for reuse.However the previous researches lack of concerning on relationship maintaining and design reuse in knowledge level.We propose a novel semantic driven design reuse system,including a property computation algorithm that enables our system to compute the properties while modeling process to maintain the semantic consistency,and a vertex statics based algorithm that enables the system to recognize scene design pattern as universal semantic model for the same type of scenes.With the universal semantic model,the system conducts the modeling process of future design works by suggestions and constraints on operation.The proposed framework empowers the reuse of 3D scene design on both model level and knowledge level.
基金Supported by the National Natural Science Foundation of China(10775047)Hunan Provincial Natural Science Foundation of China(08JJ3093)the Key Programof Scientific and Technical of Hunan Province(2007FJ2006)
文摘In industrial environment,heat sources often are contaminant sources and health threatening contaminants are mainly passive,so a detailed understanding of airflow mode can assist in work environment hygiene measurement and prevention.This paper presented a numerical investigation of stratified airflow scenario in a high-space industrial hall with validated commercial code and experimentally acquired boundary conditions.Based upon an actually undergoing engineering project,this study investigated the performance of the buoyancy-driven displacement ventilation in a large welding hall with big components manufactured.The results have demonstrated that stratified airflow sustained by thermal buoyancy provides zoning effect in terms of clean and polluted regions except minor stagnant eddy areas.The competition between negative buoyant jets from displacement radial diffusers and positive buoyant plume from bulk object constitutes the complex transport characteristics under and above stratification interface.Entrainment,downdraft and turbulent eddy motion complicate the upper mixing zone,but the exhaust outlet plays a less important role in the whole field flow.And the corresponding suggestions concerning computational stability and convergence,further improvements in modelling and measurements were given.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275432,51505390)Sichuan Application Foundation Projects(Grant No.2016JY0098)Independent Research Project of TPL(Grant No.TPL1501)
文摘When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design.
基金supported by the Commonweal Program of Chinese Ministry of Water Resources( No.200901062)the National Natural Science Foundation of China ( No.50979033)the Research Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering ( No. 2009585812 and No. 2008491011)
文摘Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nearshore) model is used to calculate wave field and the input wind field is the QSCAT/NCEP (Quick Scatterometer/National Centers for Environmental Prediction) data. The two-dimensional wavelet transform is applied to analyze the X-band radar image of nearshore wave field and it reveals that the observed wave spectrum has shoaling characteristics in frequency domain. The reverse calculation approach of wave spectrum in deep water is proposed and validated with experimental tests. The two-dimensional digital low-pass filter is used to obtain the initialization wave field. Wave data during Typhoon Sinlaku is used to calibrate the data assimilation parameters and test the reverse calculation approach. Data assimilation corrects the significant wave height and the low frequency spectra energy evidently at Beishuang Station along Fujian Province coast, where the entire assimilation indexes are positive in verification moments. The nowcasting wave field shows that the present model can obtain more accurate wave predictions for coastal and ocean engineering in Southeast China Sea.
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010.
文摘The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.
文摘Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangentpulse driven model and demonstrate that it indicates a desirable design, i.e., of being both fast and accurate for population transfer. As opposed to other existing strategies, a remarkable character of the present scheme is that high velocity of the nonadiabatic evolution itself not only will not lead to unwanted transitions but also can suppress the error caused by the truncation of the driving pulse.
文摘Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and automating code generation from the models. Model Driven Software Development (MDSD) offers significantly more effective approaches. These approaches improve the way of building software. Model driven approaches partially increase developer productivity, decrease the cost of software construction, improve software reusability, and make software more maintainable. This paper investigates the methods where Model Driven Software Development is integrated with Software Product Line (SPL). This SLR has been conducted to identify 71 research works published since 2014. We have collected 18 tools, 14 techniques and 17 languages used for MDSD for SPL. We analyze which technique is suitable for SPL. We compare the techniques on the basis of features provided by these tools to understand the better-quality results.
文摘The IEC 61131-3 standard defines a model and a set of programming languages for the development of industrial automation software. It is widely accepted by industry and most of the commercial tool vendors advertise compliance with it. On the other side, Model Driven Development (MDD) has been proved as a quite successful paradigm in general-purpose computing. This was the motivation for exploiting the benefits of MDD in the industrial automation domain. With the emerging IEC 61131 specification that defines an object-oriented (OO) extension to the function block model, there will be a push to the industry to better exploit the benefits of MDD in automation systems development. This work discusses possible alternatives to integrate the current but also the emerging specification of IEC 61131 in the model driven development process of automation systems. IEC 61499, UML and SysML are considered as possible alternatives to allow the developer to work in higher layers of abstraction than the one supported by IEC 61131 and to more effectively move from requirement specifications into the implementation model of the system.
基金supported by the National Natural Science Foundation of China(61273198)
文摘To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
基金supported financially by the National Key Research Project(No.2016YFB0300901).
文摘The pressure-driven mold filling ability of aluminum alloy melt/semi-solid slurry is of great significance in pressure casting processes,and the rheological behavior of the alloy has a crucial effect on the mold filling ability according to fluid dynamics.In this work,a pressure-driven mold filling model is first proposed based on the rheological behavior of the alloys.A356 alloy is employed as an example to clarify the rheological behavior of aluminum alloys,which obeys the power law model and is affected by temperature.The rheological behavior of the alloy in semi-solid state is modelled with the coupling of shear rate and temperature.The stop of mold filling attributes to the pressure loss which is caused by the viscosity during the flow of the melt/semi-solid slurry.Pressure loss caused by viscous flow and heat transfer between the alloy and the mold are calculated and coupled during the mold filling of the melt/semi-solid slurry.A pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry is established based on steady-state rheological behavior.The model successfully predicts the filling length of melt/semi-solid slurry in pressure casting processes.Compared with the experimental results,the model can provide a quantitative approach to characterize the pressure-driven mold filling ability of aluminum alloy melt.The model is capable of describing the stop filling behavior of other aluminum alloys in pressure casting processes with corresponding rheological parameters and heat transfer coefficient.
基金The National Natural Science Foundation of China(41271393).
文摘Battlefield environment simulation process is an important part of battlefield environment information support, which needs to be built around the task process. At present, the interoperability between battlefield environment simulation system and command and control system is still imperfect, and the traditional simulation data model cannot meet war fighters’ high-efficient and accurate understanding and analysis on battlefield environment’s information. Therefore, a kind of task-orientated battlefield environment simulation process model needs to be construed to effectively analyze the key information demands of the command and control system. The structured characteristics of tasks and simulation process are analyzed, and the simulation process concept model is constructed with the method of object-orientated. The data model and formal syntax of GeoBML are analyzed, and the logical model of simulation process is constructed with formal language. The object data structure of simulation process is defined and the object model of simulation process which maps tasks is constructed. In the end, the battlefield environment simulation platform modules are designed and applied based on this model, verifying that the model can effectively express the real-time dynamic correlation between battlefield environment simulation data and operational tasks.
基金Sponsored by the National High Technology Research & Development Program of China(Grant No.2006AA04Z165,2006AA01Z167)the National Key Technology Research & Development Program of China(Grant No.2006BAH02A09)
文摘Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode includes a calculation-independent model ( CIM ), a platform-independent model ( PIM ), a platform-specific model (PSM) and a code level. Based on this mode, the modeling architecture of CIM level is presented. CIM here includes a global model, a process model, an information model and an organization model. The modeling elements of global model, process recta-model, information recta-model and organization meta-model are defined in detail and the relationship between them is described. The reflecting relationship between these models is established as well.
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.
文摘Oil spills can generate multiple effects in different time scales on the marine ecosystem. The numerical modeling of these processes is an important tool with low computational cost which provides a powerful appliance to environmental agencies regarding the risk management. In this way, the objective of this work is to evaluate the influence of a number of physical forcing acting over a hypothetical oil spill along the Southern Brazilian Shelf. The numerical simulation was carried out using the ECOS model (Easy Coupling Oil System), an oil spill model developed at the Universidade Federal do Rio Grande—FURG, coupled with the tridimensional hydrodynamic model TELEMAC3D (EDF, France). The hydrodynamic model provides the current velocity, salinity and temperature fields used by the oil spill model to evaluate the behavior and the fate of the spilled oil. The results suggest that the local wind influence is the main forcing driven the fate of the spilled oil, and this forcing responds for more than 60% of the oil slick variability. The direction and intensity of the costal currents control between 20% and 40% of the oil variability, and the currents are important controlling the behavior and the tridimensional transportation of the oil. On the other hand, the turbulent diffusion is important for the horizontal drift of the oil. The weathering results indicate 40% of evaporation and 80% of emulsification, and the combination of these processes leads an increasing of the oil density around, 53.4 kg/m3 after 5 days of simulation.