Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensi...Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensional evaluation system is built to evaluate the government performance of China haze. Second, a data-driven model is employed to reveal the operation mechanism of China’s haze and is described as a multi input and multi output system. Third, a prototype system is set up to verify the proposed scheme, and the result provides us with a graphical tool to monitor different haze control strategies.展开更多
The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in c...The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in computer graphics in recent years.First,we provide a brief introduction of physical based fluid simulation methods based on their spatial discretization,including Lagrangian,Eulerian,and hybrid methods.The characteristics of these underlying structures and their inherent connection with data driven methodologies are then analyzed.Subsequently,we review studies pertaining to a wide range of applications,including data-driven solvers,detail enhancement,animation synthesis,fluid control,and differentiable simulation.Finally,we discuss some related issues and potential directions in data-driven fluid simulation.We conclude that the fluid simulation combined with data-driven methods has some advantages,such as higher simulation efficiency,rich details and different pattern styles,compared with traditional methods under the same parameters.It can be seen that the data-driven fluid simulation is feasible and has broad prospects.展开更多
The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases(HTDs),highlighting the need for advanced evidence-based management strategies.We have developed a conceptual...The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases(HTDs),highlighting the need for advanced evidence-based management strategies.We have developed a conceptual framework aimed at alleviating the global burden of HTDs,grounded in the One Health concept.This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making,tailored to distinct contexts.We collected extensive national-level data from authoritative public databases for the years 2010–2019.The burdens of five categories of disease causes–cardiovascular diseases,infectious respiratory diseases,injuries,metabolic diseases,and non-infectious respiratory diseases–were designated as intermediate outcome variables.The cumulative burden of these five categories,referred to as the total HTD burden,was the final outcome variable.We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures,allowing us to explore optimal decision-making strategies and assess their corresponding contributions.Our model selection results demonstrated the superior performance of the Graph Neural Network(GNN)model across various metrics.Utilizing simulations driven by the GNN model,we identified a set of optimal intervention strategies for reducing disease burden,specifically tailored to the seven major regions:East Asia and Pacific,Europe and Central Asia,Latin America and the Caribbean,Middle East and North Africa,North America,South Asia,and Sub-Saharan Africa.Sectoral mitigation and adaptation measures,acting upon our categories of Infrastructure&Community,Ecosystem Resilience,and Health System Capacity,exhibited particularly strong performance for various regions and diseases.Seven out of twelve interventions were included in the optimal intervention package for each region,including raising low-carbon energy use,increasing energy intensity,improving livestock feed,expanding basic health care delivery coverage,enhancing health financing,addressing air pollution,and improving road infrastructure.The outcome of this study is a global decision-making tool,offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
With more commercialized automated vehicles(AVs)shortly entering the market,evaluating their fuel economy has become an important topic.The traditional fixed-profile test methods only indicate the effect of powertrain...With more commercialized automated vehicles(AVs)shortly entering the market,evaluating their fuel economy has become an important topic.The traditional fixed-profile test methods only indicate the effect of powertrain efficiency on fuel economy and cannot reflect the influences of control algorithms or driving behaviors on fuel consumption under real-world traffic conditions.Therefore,a data-driven simulation method for evaluating the real driving fuel economy of automated vehicles is developed.It utilizes naturalistic driving data to reconstruct test cycles.This method can inspect the performance of automated vehicle control algorithms under realistic traffic conditions in terms of fuel economy.The naturalistic driving data collected on urban expressways and freeways were used to model the longitudinal driving scenarios.Then,the fuel consumption of automated and human-driven vehicle was evaluated under the simulated scenarios via the Monte Carlo integration approach.It was found that the fuel consumption rate of the automated vehicle was 11.944 L/100 km under the car-following scenarios.The human-driven vehicle had a fuel consumption rate of 10.124 L/100 km under the same traffic conditions.The tested automated vehicle control algorithm is tuned to achieve better performance in terms of safety and travel efficiency and hence it tends to maintain a relatively steady time headway to the leading vehicle.It applies more frequent accelerating/braking cycles and higher average speed compared to typical human drivers.These characteristics lead to a higher fuel consumption rate of the automated vehicle.The presented method provides an accurate and efficient way to analyze the fuel economy performance of automated vehicles under practical conditions.This method can easily be scaled for large-scale traffic flow analyses.It can also be used to study the effects of human driving styles on fuel economy.展开更多
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o...Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.展开更多
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ...As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper...Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.展开更多
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu...Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismi...The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions.展开更多
文摘Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensional evaluation system is built to evaluate the government performance of China haze. Second, a data-driven model is employed to reveal the operation mechanism of China’s haze and is described as a multi input and multi output system. Third, a prototype system is set up to verify the proposed scheme, and the result provides us with a graphical tool to monitor different haze control strategies.
基金the Natural Key Research and Development Program of China(2018YFB1004902)the Natural Science Foundation of China(61772329,61373085).
文摘The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in computer graphics in recent years.First,we provide a brief introduction of physical based fluid simulation methods based on their spatial discretization,including Lagrangian,Eulerian,and hybrid methods.The characteristics of these underlying structures and their inherent connection with data driven methodologies are then analyzed.Subsequently,we review studies pertaining to a wide range of applications,including data-driven solvers,detail enhancement,animation synthesis,fluid control,and differentiable simulation.Finally,we discuss some related issues and potential directions in data-driven fluid simulation.We conclude that the fluid simulation combined with data-driven methods has some advantages,such as higher simulation efficiency,rich details and different pattern styles,compared with traditional methods under the same parameters.It can be seen that the data-driven fluid simulation is feasible and has broad prospects.
基金The project was supported by National Natural Science Foundation of China(No.72204160)the International Joint Laboratory on Tropical Diseases Control in Greater Mekong Subregion(No.21410750200)Open Research Project of Key Laboratory of Parasite Pathogen and Vector Biology of National Health Commission of the People's Republic of China(No.NHCKFKT2022-16).
文摘The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases(HTDs),highlighting the need for advanced evidence-based management strategies.We have developed a conceptual framework aimed at alleviating the global burden of HTDs,grounded in the One Health concept.This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making,tailored to distinct contexts.We collected extensive national-level data from authoritative public databases for the years 2010–2019.The burdens of five categories of disease causes–cardiovascular diseases,infectious respiratory diseases,injuries,metabolic diseases,and non-infectious respiratory diseases–were designated as intermediate outcome variables.The cumulative burden of these five categories,referred to as the total HTD burden,was the final outcome variable.We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures,allowing us to explore optimal decision-making strategies and assess their corresponding contributions.Our model selection results demonstrated the superior performance of the Graph Neural Network(GNN)model across various metrics.Utilizing simulations driven by the GNN model,we identified a set of optimal intervention strategies for reducing disease burden,specifically tailored to the seven major regions:East Asia and Pacific,Europe and Central Asia,Latin America and the Caribbean,Middle East and North Africa,North America,South Asia,and Sub-Saharan Africa.Sectoral mitigation and adaptation measures,acting upon our categories of Infrastructure&Community,Ecosystem Resilience,and Health System Capacity,exhibited particularly strong performance for various regions and diseases.Seven out of twelve interventions were included in the optimal intervention package for each region,including raising low-carbon energy use,increasing energy intensity,improving livestock feed,expanding basic health care delivery coverage,enhancing health financing,addressing air pollution,and improving road infrastructure.The outcome of this study is a global decision-making tool,offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金This project was supported by the SAIC Motor Industry-University Cooperative Research Foundation(No.1912).
文摘With more commercialized automated vehicles(AVs)shortly entering the market,evaluating their fuel economy has become an important topic.The traditional fixed-profile test methods only indicate the effect of powertrain efficiency on fuel economy and cannot reflect the influences of control algorithms or driving behaviors on fuel consumption under real-world traffic conditions.Therefore,a data-driven simulation method for evaluating the real driving fuel economy of automated vehicles is developed.It utilizes naturalistic driving data to reconstruct test cycles.This method can inspect the performance of automated vehicle control algorithms under realistic traffic conditions in terms of fuel economy.The naturalistic driving data collected on urban expressways and freeways were used to model the longitudinal driving scenarios.Then,the fuel consumption of automated and human-driven vehicle was evaluated under the simulated scenarios via the Monte Carlo integration approach.It was found that the fuel consumption rate of the automated vehicle was 11.944 L/100 km under the car-following scenarios.The human-driven vehicle had a fuel consumption rate of 10.124 L/100 km under the same traffic conditions.The tested automated vehicle control algorithm is tuned to achieve better performance in terms of safety and travel efficiency and hence it tends to maintain a relatively steady time headway to the leading vehicle.It applies more frequent accelerating/braking cycles and higher average speed compared to typical human drivers.These characteristics lead to a higher fuel consumption rate of the automated vehicle.The presented method provides an accurate and efficient way to analyze the fuel economy performance of automated vehicles under practical conditions.This method can easily be scaled for large-scale traffic flow analyses.It can also be used to study the effects of human driving styles on fuel economy.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang Uni-versity,China(No.2024KQ130)the National Natural Science Foundation of China(Nos.52073010 and 52373259).
文摘Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.
基金supported by the National Natural Science Foundation of China(Nos.U24A2088,42177130,42277174,and 42477166).
文摘As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2062)supported by the Key Laboratory for Carbonate Reservoirs of China National Petroleum Corporation。
文摘Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.
基金supported by the National Natural Science Foundation of China (Grant No.52108361)the Sichuan Science and Technology Program of China (Grant No.2023YFS0436)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2022Z015).
文摘Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2023C01National Natural Science Foundation of China under Grant No.52478570Distinguished Young Scholars Program of the Natural Science Foundation of Heilongjiang Province,China under Grant No.JQ2024E002。
文摘The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions.