Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands...Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.展开更多
The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution...The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution to handle complex large-scale control missions by using sufficient computing resources.However,the computing ability enables more complex devices and more data to be involved and most of the data have not been fully utilized.Meanwhile,it is even impossible to obtain an accurate model of each device in the complex control systems for the model-based control algorithms.Therefore,motivated by the above reasons,we propose a data-driven predictive cloud control system.To achieve the proposed system,a practical data-driven predictive cloud control testbed is established and together a cloud-edge communication scheme is developed.Finally,the simulations and experiments demonstrate the effectiveness of the proposed system.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,t...This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
Predictive cruise control(PCC)is an intelligence-assisted control technology that can significantly improve the overall performance of a vehicle by using road and traffic information in advance.With the continuous dev...Predictive cruise control(PCC)is an intelligence-assisted control technology that can significantly improve the overall performance of a vehicle by using road and traffic information in advance.With the continuous development of cloud control platforms(CCPs)and telematics boxes(T-boxes),cloud-based predictive cruise control(CPCC)systems are considered an effective solution to the problems of map update difficulties and insufficient computing power on the vehicle side.In this study,a vehicle-cloud hierarchical control architecture for PCC is designed based on a CCP and T-box.This architecture utilizes waypoint structures for hierarchical and dynamic cooperative inter-triggering,enabling rolling optimization of the system and commending parsing at the vehicle end.This approach significantly improves the anti-interference capability and resolution efficiency of the system.On the CCP side,a predictive fuel-saving speed-planning(PFSP)algorithm that considers the throttle input,speed variations,and time efficiency based on the waypoint structure is proposed.It features a forward optimization search without requiring weight adjustments,demonstrating robust applicability to various road conditions and vehicles equiped with constant cruise(CC)system.On the vehicle-side T-box,based on the reference control sequence with the global navigation satellite system position,the recommended speed is analyzed and controlled using the acute angle principle.Through analyzing the differences of the PFSP algorithm compared to dynamic programming(DP)and Model predictive control(MPC)algorithms under uphill and downhill conditions,the results show that the PFSP achieves good energy-saving performance compared to CC without exhibiting significant speed fluctuations,demonstrating strong adaptability to the CC system.Finally,by building an experimental platform and running field tests over a total of 2000 km,we verified the effectiveness and stability of the CPCC system and proved the fuel-saving performance of the proposed PFSP algorithm.The results showed that the CPCC system equipped with the PFSP algorithm achieved an average fuel-saving rate of 2.05%-4.39%compared to CC.展开更多
The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailin...The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated.展开更多
Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynam...Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a...This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.展开更多
Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track pred...Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios.展开更多
The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communica...The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.展开更多
This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller fo...This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited.展开更多
With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter ...With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments.展开更多
In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to t...In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.展开更多
文摘Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.
基金supported by the National Natural Science Foundation of China(61836001,62122014,62173036,62102022)。
文摘The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution to handle complex large-scale control missions by using sufficient computing resources.However,the computing ability enables more complex devices and more data to be involved and most of the data have not been fully utilized.Meanwhile,it is even impossible to obtain an accurate model of each device in the complex control systems for the model-based control algorithms.Therefore,motivated by the above reasons,we propose a data-driven predictive cloud control system.To achieve the proposed system,a practical data-driven predictive cloud control testbed is established and together a cloud-edge communication scheme is developed.Finally,the simulations and experiments demonstrate the effectiveness of the proposed system.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
文摘This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2501000).
文摘Predictive cruise control(PCC)is an intelligence-assisted control technology that can significantly improve the overall performance of a vehicle by using road and traffic information in advance.With the continuous development of cloud control platforms(CCPs)and telematics boxes(T-boxes),cloud-based predictive cruise control(CPCC)systems are considered an effective solution to the problems of map update difficulties and insufficient computing power on the vehicle side.In this study,a vehicle-cloud hierarchical control architecture for PCC is designed based on a CCP and T-box.This architecture utilizes waypoint structures for hierarchical and dynamic cooperative inter-triggering,enabling rolling optimization of the system and commending parsing at the vehicle end.This approach significantly improves the anti-interference capability and resolution efficiency of the system.On the CCP side,a predictive fuel-saving speed-planning(PFSP)algorithm that considers the throttle input,speed variations,and time efficiency based on the waypoint structure is proposed.It features a forward optimization search without requiring weight adjustments,demonstrating robust applicability to various road conditions and vehicles equiped with constant cruise(CC)system.On the vehicle-side T-box,based on the reference control sequence with the global navigation satellite system position,the recommended speed is analyzed and controlled using the acute angle principle.Through analyzing the differences of the PFSP algorithm compared to dynamic programming(DP)and Model predictive control(MPC)algorithms under uphill and downhill conditions,the results show that the PFSP achieves good energy-saving performance compared to CC without exhibiting significant speed fluctuations,demonstrating strong adaptability to the CC system.Finally,by building an experimental platform and running field tests over a total of 2000 km,we verified the effectiveness and stability of the CPCC system and proved the fuel-saving performance of the proposed PFSP algorithm.The results showed that the CPCC system equipped with the PFSP algorithm achieved an average fuel-saving rate of 2.05%-4.39%compared to CC.
基金Supported by National Natural Science Foundation of China(Grant Nos.52172383,51805081)Jiangsu Provincial Postgraduate Research&Practice Innovation Program(Grant No.KYCX22_0196)。
文摘The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated.
基金Supported by National Natural Science Foundation of China(Grant Nos.52402497,52025121 and 52002066)Young Scientists Project and General Project of Applied Basic Research in Yunnan Province(Grant Nos.202501AT070296,202401AU070196)+1 种基金The Key Laboratory of Modern Agricultural Engineering of Ordinary Colleges and Universities of Education Department of Autonomous Region(Grant No.TDNG2023108)Jiangsu Provincial Achievements Transformation Project(Grant No.BA2018023).
文摘Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金supported by the National Nature Science Foundation of China(62073194)the Natural Science Foundation of Shandong Province of China(ZR2023MF028)the Taishan Scholars Program of Shandong Province(tsqn202312008)
文摘This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.
基金supported in part by the Guangdong Provincial Universities'Characteristic Innovation Project under Grant 2024KTSCX360in part by the Guangdong Educational Science Planning Project under Grant 2023GXJK837.
文摘Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios.
基金Supported by the National Key Research and Development Program of China(Grant No.2023YFE0204700)the National Natural Science Foundation of China(Grant Nos.52472402 and 52302469)+7 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012327 and 2024A1515010449)the research grant of the University of Macao(Grant No.MYRG GRG2023-00235-FST-UMDF)Shandong Provincial Natural Science Foundation(Grant No.ZR2023ME133)the Fundamental Research Funds for the Central Universities(Grant No.N2403012)the Science and Technology Development Fund of Macao SAR(Grant No.0091/2023/AMJ)the China Postdoctoral Science Foundation(Grant Nos.2023M740538 and AM2024003)the Zhuhai Science and Technology Innovation Bureau(Grant No.2220004003107)the Yunfu Science and Technology Project(Grant No.2024090202).
文摘The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.
基金support through his Master scholarshipThe Vicerrectoría de Investigación y Estudios de Posgrado(VIEP-BUAP)partially funded this work under grant number 00593-PV/2025.
文摘This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited.
基金co-supported by the National Natural Science Foundation of China(No.52477063)the National Key Research and Development Program of China(No.2023YFF0719100)。
文摘With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments.
基金supported in part by the National Natural Science Foundation of China(62403396,62433018,62373113)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011527,2023B1515120010)the Postdoctoral Fellowship Program of CPSF(GZB20240621)
文摘In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.