期刊文献+
共找到369,301篇文章
< 1 2 250 >
每页显示 20 50 100
Data-driven optimization for fine water injection in a mature oil field 被引量:6
1
作者 JIA Deli LIU He +4 位作者 ZHANG Jiqun GONG Bin PEI Xiaohan WANG Quanbin YANG Qinghai 《Petroleum Exploration and Development》 2020年第3期674-682,共9页
Based on the traditional numerical simulation and optimization algorithms,in combination with the layered injection and production"hard data"monitored at real time by automatic control technology,a systemati... Based on the traditional numerical simulation and optimization algorithms,in combination with the layered injection and production"hard data"monitored at real time by automatic control technology,a systematic approach for detailed water injection design using data-driven algorithms is proposed.First the data assimilation technology is used to match geological model parameters under the constraint of observed well dynamics;the flow relationships between injectors and producers in the block are calculated based on automatic identification method for layered injection-production flow relationship;multi-layer and multi-direction production splitting technique is used to calculate the liquid and oil production of producers in different layers and directions and obtain quantified indexes of water injection effect.Then,machine learning algorithms are applied to evaluate the effectiveness of water injection in different layers of wells and to perform the water injection direction adjustment.Finally,the particle swarm algorithm is used to optimize the detailed water injection plan and to make production predictions.This method and procedure make full use of the automation and intelligence of data-driven and machine learning algorithms.This method was used to match the data of a complex faulted reservoir in eastern China,achieving a fitting level of 85%.The cumulative oil production in the example block for 12 months after optimization is 8.2%higher than before.This method can help design detailed water injection program for mature oilfields. 展开更多
关键词 zonal water injection fine water injection evaluation index optimization plan big data data-driven artificial intelligence
在线阅读 下载PDF
A novel triple periodic minimal surface-like plate lattice and its data-driven optimization method for superior mechanical properties 被引量:2
2
作者 Yanda WANG Yanping LIAN +2 位作者 Zhidong WANG Chunpeng WANG Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期217-238,共22页
Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM... Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM)technologies.In this work,a novel design of plate lattice structures described by a parametric model is proposed to enrich the design space of plate lattice structures with high connectivity suitable for AM processes.The parametric model takes the basic unit of the triple periodic minimal surface(TPMS)lattice as a skeleton and adopts a set of generation parameters to determine the plate lattice structure with different topologies,which takes the advantages of both plate lattices for superior specific mechanical properties and TPMS lattices for high connectivity,and therefore is referred to as a TPMS-like plate lattice(TLPL).Furthermore,a data-driven shape optimization method is proposed to optimize the TLPL structure for maximum mechanical properties with or without the isotropic constraints.In this method,the genetic algorithm for the optimization is utilized for global search capability,and an artificial neural network(ANN)model for individual fitness estimation is integrated for high efficiency.A set of optimized TLPLs at different relative densities are experimentally validated by the selective laser melting(SLM)fabricated samples.It is confirmed that the optimized TLPLs could achieve elastic isotropy and have superior stiffness over other isotropic lattice structures. 展开更多
关键词 lattice structure triple periodic minimal surface(TPMS) plate lattice structural optimization machine learning
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
3
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
Physics and data-driven alternative optimization enabled ultra-low-sampling single-pixel imaging 被引量:2
4
作者 Yifei Zhang Yingxin Li +5 位作者 Zonghao Liu Fei Wang Guohai Situ Mu Ku Chen Haoqiang Wang Zihan Geng 《Advanced Photonics Nexus》 2025年第3期55-66,共12页
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul... Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection. 展开更多
关键词 single-pixel imaging deep learning alternative optimization
在线阅读 下载PDF
Topology Optimization of Lattice Structures through Data-Driven Model of M-VCUT Level Set Based Substructure
5
作者 Minjie Shao Tielin Shi +1 位作者 Qi Xia Shiyuan Liu 《Computer Modeling in Engineering & Sciences》 2025年第9期2685-2703,共19页
A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching... A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching their diversity of configuration while ensuring connectivity.To construct the data-driven model of substructure,a database is prepared by sampling the space of substructures spanned by several substructure prototypes.Then,for each substructure in this database,the stiffness matrix is condensed so that its degrees of freedomare reduced.Thereafter,the data-drivenmodel of substructures is constructed through interpolationwith compactly supported radial basis function(CS-RBF).The inputs of the data-driven model are the design variables of topology optimization,and the outputs are the condensed stiffness matrix and volume of substructures.During the optimization,this data-driven model is used,thus avoiding repeated static condensation that would requiremuch computation time.Several numerical examples are provided to verify the proposed method. 展开更多
关键词 data-driven lattice structure SUBSTRUCTURE M-VCUT level set topology optimization
在线阅读 下载PDF
State-Owned Enterprises IPD R&D Management Optimization Using Data-Driven Decision-Making Models
6
作者 ZHAO Yao ZHOU Wei +1 位作者 DING Hui WANG Tingyong 《Chinese Business Review》 2025年第3期99-108,共10页
In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD... In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD),with its emphasis on cross-functional teamwork,concurrent engineering,and data-driven decision-making,has been widely recognized for enhancing R&D efficiency and product quality.However,the unique characteristics of SOEs pose challenges to the effective implementation of IPD.The advancement of big data and artificial intelligence technologies offers new opportunities for optimizing IPD R&D management through data-driven decision-making models.This paper constructs and validates a data-driven decision-making model tailored to the IPD R&D management of SOEs.By integrating data mining,machine learning,and other advanced analytical techniques,the model serves as a scientific and efficient decision-making tool.It aids SOEs in optimizing R&D resource allocation,shortening product development cycles,reducing R&D costs,and improving product quality and innovation.Moreover,this study contributes to a deeper theoretical understanding of the value of data-driven decision-making in the context of IPD. 展开更多
关键词 state-owned enterprises IPD R&D management data-driven decision-making R&D optimization innovation
在线阅读 下载PDF
Data-driven framework based on machine learning and optimization algorithms to predict oxide-zeolite-based composite and reaction conditions for syngas-to-olefin conversion
7
作者 Mansurbek Urol ugli Abdullaev Woosong Jeon +5 位作者 Yun Kang Juhwan Noh Jung Ho Shin Hee-Joon Chun Hyun Woo Kim Yong Tae Kim 《Chinese Journal of Catalysis》 2025年第7期211-227,共17页
Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resour... Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resource-intensive.To address this challenge,we implemented a three-stage framework integrating machine learning,Bayesian optimization,and experimental validation,utilizing a carefully curated dataset from the literature.Our ensemble-tree model(R^(2)>0.87)identified Zn-Zr and Cu-Mg binary mixed oxides as the most effective OXZEO systems,with their light olefin space-time yields confirmed by physically mixing with HSAPO-34 through experimental validation.Density functional theory calculations further elucidated the activity trends between Zn-Zr and Cu-Mg mixed oxides.Among 16 catalyst and reaction condition descriptors,the oxide/zeolite ratio,reaction temperature,and pressure emerged as the most significant factors.This interpretable,data-driven framework offers a versatile approach that can be applied to other catalytic processes,providing a powerful tool for experiment design and optimization in catalysis. 展开更多
关键词 Syngas-to-olefin Oxide-zeolite-based composite Machine learning Bayesian optimization Catalyst and reaction engineering discovery Reaction condition optimization Density functional theory
在线阅读 下载PDF
Balanced Optimization of Dimensional Accuracy and Printing Efficiency in FDM Based on Data-Driven Modeling
8
作者 Liu Changhui Li Hao +5 位作者 Yu Chunlong Liao Xueru Liu Xiaojia Sun Jianzhi Tang Qirong Yu Min 《Additive Manufacturing Frontiers》 2025年第2期97-110,共14页
Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring... Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM. 展开更多
关键词 Fused deposition modeling Dimensional accuracy Process parameters Printing efficiency Balanced optimization Sustainable manufacturing
在线阅读 下载PDF
Model-Based System Multidisciplinary Design Optimization for Preliminary Design of a Blended Wing-Body Underwater Glider
9
作者 WANG Zhi-long LI Jing-lu +3 位作者 WANG Peng DONG Hua-chao WANG Xin-jing WEN Zhi-wen 《China Ocean Engineering》 2025年第4期755-767,共13页
Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while... Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes. 展开更多
关键词 model-based design multidisciplinary design optimization data-driven optimization blended-wingbody underwater glider(BWBUG) physical system simulation
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
10
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
DADOS:A Cloud-based Data-driven Design Optimization System 被引量:3
11
作者 Xueguan Song Shuo Wang +2 位作者 Yonggang Zhao Yin Liu Kunpeng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期50-66,共17页
This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including th... This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including the design of experiments,surrogate models,model validation and selection,prediction,optimization,and sensitivity analysis.Moreover,it also includes an exclusive ensemble surrogate modeling technique,the extended hybrid adaptive function,which can make use of the advantages of each surrogate and eliminate the effort of selecting the appropriate individual surrogate.To improve ease of use,DADOS provides a user-friendly graphical user interface and employed flow-based programming so that users can conduct design optimization just by dragging,dropping,and connecting algorithm blocks into a workflow instead of writing massive code.In addition,DADOS allows users to visualize the results to gain more insights into the design problems,allows multi-person collaborating on a project at the same time,and supports multi-disciplinary optimization.This paper also details the architecture and the user interface of DADOS.Two examples were employed to demonstrate how to use DADOS to conduct data-driven design optimization.Since DADOS is a cloud-based system,anyone can access DADOS at www.dados.com.cn using their web browser without the need for installation or powerful hardware. 展开更多
关键词 data-driven optimization Cloud-based software Design of experiments Surrogate model
在线阅读 下载PDF
Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches 被引量:3
12
作者 Jin Meng Yu-Jie Zhou +4 位作者 Tian-Rui Ye Yi-Tian Xiao Ya-Qiu Lu Ai-Wei Zheng Bang Liang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期277-294,共18页
A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis ca... A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis can be challenging because production performance is dominated by the complex interaction among a series of geological and engineering factors.In fact,each factor can be viewed as a player who makes cooperative contributions to the production payoff within the constraints of physical laws and models.Inspired by the idea,we propose a hybrid data-driven analysis framework in this study,where the contributions of dominant factors are quantitatively evaluated,the productions are precisely forecasted,and the development optimization suggestions are comprehensively generated.More specifically,game theory and machine learning models are coupled to determine the dominating geological and engineering factors.The Shapley value with definite physical meaning is employed to quantitatively measure the effects of individual factors.A multi-model-fused stacked model is trained for production forecast,which provides the basis for derivative-free optimization algorithms to optimize the development plan.The complete workflow is validated with actual production data collected from the Fuling shale gas field,Sichuan Basin,China.The validation results show that the proposed procedure can draw rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for development plan optimization.Comparing with traditional and experience-based approaches,the hybrid data-driven procedure is advanced in terms of both efficiency and accuracy. 展开更多
关键词 Shale gas Production performance data-driven Dominant factors Game theory Machine learning Derivative-free optimization
原文传递
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
13
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
A Modified PRP-HS Hybrid Conjugate Gradient Algorithm for Solving Unconstrained Optimization Problems 被引量:1
14
作者 LI Xiangli WANG Zhiling LI Binglan 《应用数学》 北大核心 2025年第2期553-564,共12页
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien... In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient. 展开更多
关键词 Conjugate gradient method Unconstrained optimization Sufficient descent condition Global convergence
在线阅读 下载PDF
Optimal design of hot rolling process for C-Mn steel by combining industrial data-driven model and multi-objective optimization algorithm 被引量:7
15
作者 Si-wei Wu Xiao-guang Zhou +3 位作者 Jia-kuang Ren Guang-ming Cao Zhen-yu Liu Nai-an Shi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期700-705,共6页
A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably m... A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process. 展开更多
关键词 Industrial data Data processing - Mechanical property optimal design Hot rolling process C-Mn steel
原文传递
Optimization Design of Fairings for VIV Suppression Based on Data-Driven Models and Genetic Algorithm 被引量:1
16
作者 LIU Xiu-quan JIANG Yong +3 位作者 LIU Fu-lai LIU Zhao-wei CHANG Yuan-jiang CHEN Guo-ming 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期153-158,共6页
Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be... Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design. 展开更多
关键词 optimization design vortex induced vibration suppression devices data-driven models BP neural network genetic algorithm
在线阅读 下载PDF
Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis 被引量:9
17
作者 Yingjun Wang Zhongyuan Liao +2 位作者 Shengyu Shi Zhenpei Wang Leong Hien Poh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期433-458,共26页
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A... Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches. 展开更多
关键词 data-driven BP neural network petal-shaped auxetics negative Poisson’s ratio structural design isogeometric analysis.
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
18
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
A survey on multi-objective,model-based,oil and gas field development optimization:Current status and future directions 被引量:1
19
作者 Auref Rostamian Matheus Bernardelli de Moraes +1 位作者 Denis Jose Schiozer Guilherme Palermo Coelho 《Petroleum Science》 2025年第1期508-526,共19页
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall... In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization. 展开更多
关键词 Derivative-free algorithms Ensemble-based optimization Gradient-based methods Life-cycle optimization Reservoir field development and management
原文传递
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
20
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部