期刊文献+
共找到30,171篇文章
< 1 2 250 >
每页显示 20 50 100
Forecast uncertainties real-time data-driven compensation scheme for optimal storage control
1
作者 Arbel Yaniv Yuval Beck 《Data Science and Management》 2025年第1期59-71,共13页
This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on... This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on an existing algorithm,this study resolves issues discovered during implementation and addresses previously overlooked concerns,resulting in significant enhancements in both performance and reliability.The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model,which is utilized for illustrative simulations to highlight its potential efficacy on a real site.Furthermore,a comprehensive comparison with the original formulation was conducted to cover all possible scenarios.This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system.Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management,significant financial losses and penalties,and potential contract violations.The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements.These advancements yield a reliable and efficient real-time correction algorithm for optimal site management,designed as an independent white box that can be integrated with any day-ahead optimization control system. 展开更多
关键词 Storage optimal scheduling Real-time storage control PV-plus-storage management Forecast uncertainty compensation
在线阅读 下载PDF
Enhanced VOC emission with increased temperature contributes to the shift of O_(3)-precursors relationship and optimal control strategy 被引量:2
2
作者 Fangqi Qu Yuanjie Huang +11 位作者 Yemin Shen Genqiang Zhong Yan Xu Lingling Jin Hongtao Qian Chun Xiong Fei Zhang Jiasi Shen Bingye Xu Xudong Tian Zhengning Xu Zhibin Wang 《Journal of Environmental Sciences》 2025年第4期218-229,共12页
Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precurs... Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precursorswas conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021.Alkanes were the most abundant VOC group,contributing to 55.0%of TVOCs concentration(56.43±21.10 ppb).OVOCs,aromatics,halides,alkenes,and alkynes contributed 18.7%,9.6%,9.3%,5.2%and 1.9%,respectively.The observational site shifted from a typical VOC control regime to a mixed regime from May to July,which can be explained by the significant increase of RO_(x)production,resulting in the transition of environment from NOx saturation to radical saturation with respect to O_(3)production.The optimal O_(3)control strategy should be dynamically changed depending on the transition of control regime.Under NOx saturation condition,minimizing the proportion of NOx in reduction could lead to better achievement of O_(3)alleviation.Under mixed control regime,the cut percentage gets the top priority for the effectiveness of O_(3)control.Five VOCs sources were identified:temperature dependent source(28.1%),vehicular exhausts(19.9%),petrochemical industries(7.2%),solvent&gasoline usage(32.3%)and manufacturing industries(12.6%).The increase of temperature and radiation would enhance the evaporation related VOC emissions,resulting in the increase of VOC concentration and the change of RO_(x)circulation.Our results highlight determination of the optimal control strategies for O_(3)pollution in a typical YRD industrial city. 展开更多
关键词 O_(3)pollution Volatile organic compounds Photochemical box model Source apportionment optimal O_(3)control strategies
原文传递
Fast Ion Gates without the Lamb-Dicke Approximation by Robust Quantum Optimal Control
3
作者 Ran Liu Xiaodong Yang +2 位作者 Yiheng Lin Yao Lu Jun Li 《Chinese Physics Letters》 2025年第8期75-82,共8页
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ... We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments. 展开更多
关键词 quantum optimal control framework gradient based optimal control quantum computation Lamb Dicke approximation fast ion gates tailored laser pulses entangling gates robust quantum optimal control
原文传递
Singular optimal control of ascent stage for a surface-to-air missile
4
作者 Wengui LEI Wanchun CHEN +1 位作者 Liang YANG Xiaopeng GONG 《Chinese Journal of Aeronautics》 2025年第8期527-541,共15页
This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the ty... This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness. 展开更多
关键词 Singular optimal control optimal control problem Goddard problem Singular surface Pseudospectral method Surface-to-air missiles
原文传递
Robust-optimal control of electromagnetic levitation system with matched and unmatched uncertainties:experimental validation
5
作者 Amit Pandey Dipak M.Adhyaru 《Control Theory and Technology》 2025年第1期28-48,共21页
The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the u... The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme. 展开更多
关键词 Nonlinear system Robust control optimal control HJB equation Lyapunov stability Electromagnetic levitation system
原文传递
Adaptive optimal control system design for semi-active suspension system by supposing variable parameters under exogenous road disturbance
6
作者 Viet Nguyen Hoang Feiqi Deng Chi Nguyen Van 《Control Theory and Technology》 2025年第1期64-73,共10页
This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are de... This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are described.The adaptive optimal control law consists of the sum of the optimal control component and the adaptive control component.First,the optimal control law is designed for the model of the suspension system after ignoring the components of uncertain parameters and exogenous disturbance caused by the road surface.The optimal control law expresses the desired dynamic characteristics of the suspension system.Next,the adaptive component is designed with the purpose of compensating for the effects caused by uncertain parameters and exogenous disturbance caused by the road surface;the adaptive component has adaptive parameter rules to estimate uncertain parameters and exogenous disturbance.When exogenous disturbances are eliminated,the system responds with an optimal controller designed.By separating theoretically the dynamic of a semi-active suspension system,this solution allows the design of two separate controllers easily and has reduced the computational burden and the use of too many tools,thus allowing for more convenient hardware implementation.The simulation results also show the effectiveness of damping oscillations of the proposed solution in this article. 展开更多
关键词 Quarter car suspension system Semi-active suspension Adaptive control optimal control Linear-quadratic regulator Exogenous disturbance
原文传递
An Optimal Control Problem to a Generalized Diffusion SEIR Model with Two Strains
7
作者 Jinfeng MAO Min ZHOU 《Journal of Mathematical Research with Applications》 2025年第5期689-710,共22页
This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-d... This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-diffusion epidemic model with two strains.Furthermore,applying vaccines as a control strategy in the model,an optimal control problem is proposed to increase the number of healthy individuals while reducing control costs.By applying the truncation function technique and the operator semigroup methods,we prove the existence and uniqueness of a globally positive strong solution for the control model.The existence of the optimal control strategy is proven by using functional analysis theory and minimum sequence methods.The first-order necessary condition satisfied by the optimal control is established by employing the dual techniques.Finally,a specific example and its algorithm are provided. 展开更多
关键词 Epidemic model optimal control the first order necessary optimality condition reaction-diffusion equations
原文传递
Event-Triggered Robust Parallel Optimal Consensus Control for Multiagent Systems
8
作者 Qinglai Wei Shanshan Jiao +1 位作者 Qi Dong Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期40-53,共14页
This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent s... This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method. 展开更多
关键词 Adaptive dynamic programming(ADP) critic neural network(NN) event-triggered control optimal consensus control robust control
在线阅读 下载PDF
An optimal midcourse guidance method for dual pulse air-to-air missiles using linear Gauss pseudospectral model predictive control method
9
作者 Jinyang WANG Wanchun CHEN +1 位作者 Liang YANG Xiaopeng GONG 《Chinese Journal of Aeronautics》 2025年第2期305-321,共17页
This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optim... This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optimal control problem with unspecified terminal time is formulated.Secondly,the control and terminal time update formulas are derived analytically.In contrast to previous work,the derivation process fully considers the Hamiltonian function corresponding to the unspecified terminal time,which is coupled with control,state,and costate.On the assumption of small perturbation,a special algebraic equation is provided to represent the equivalent optimal condition for the terminal time.Also,using Gauss pseudospectral collocation,error propagation dynamical equations involving the first-order correction term of the terminal time are transformed into a set of algebraic equations.Furthermore,analytical modification formulas can be derived by associating those equations and optimal conditions to eliminate terminal error and approach nonlinear optimal control.Even with their mathematical complexity,these formulas produce more accurate control and terminal time corrections and remove reliance on task-related parameters.Finally,several numerical simulations,comparisons with typical methods,and Monte Carlo simulations have been done to verify its optimality,high convergence rate,great stability and robustness. 展开更多
关键词 optimal midcourse guidance Air-to-air missiles Gauss pseudospectral method optimal control problem Unspecified terminal time
原文传递
SEIR Mathematical Model for Influenza-Corona Co-Infection with Treatment and Hospitalization Compartments and Optimal Control Strategies
10
作者 Muhammad Imran Brett McKinney Azhar Iqbal Kashif Butt 《Computer Modeling in Engineering & Sciences》 2025年第2期1899-1931,共33页
The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms.This article presents a novel ma... The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms.This article presents a novel mathematical model that addresses the dynamics of this co-infection by extending the SEIR(Susceptible-Exposed-Infectious-Recovered)framework to incorporate treatment and hospitalization compartments.The population is divided into eight compartments,with infectious individuals further categorized into influenza infectious,corona infectious,and co-infection cases.The proposed mathematical model is constrained to adhere to fundamental epidemiological properties,such as non-negativity and boundedness within a feasible region.Additionally,the model is demonstrated to be well-posed with a unique solution.Equilibrium points,including the disease-free and endemic equilibria,are identified,and various properties related to these equilibrium points,such as the basic reproduction number,are determined.Local and global sensitivity analyses are performed to identify the parameters that highly influence disease dynamics and the reproduction number.Knowing the most influential parameters is crucial for understanding their impact on the co-infection’s spread and severity.Furthermore,an optimal control problem is defined to minimize disease transmission and to control strategy costs.The purpose of our study is to identify the most effective(optimal)control strategies for mitigating the spread of the co-infection with minimum cost of the controls.The results illustrate the effectiveness of the implemented control strategies in managing the co-infection’s impact on the population’s health.This mathematical modeling and control strategy framework provides valuable tools for understanding and combating the dual threat of corona and influenza co-infection,helping public health authorities and policymakers make informed decisions in the face of these intertwined epidemics. 展开更多
关键词 Influenza-corona co-infection stability analysis sensitivity analysis TREATMENT self-precaution optimal control
在线阅读 下载PDF
Quantum metrology with optimal control under an arbitrary non-Markovian bosonic environment
11
作者 Likun Zhou Wen Yang 《Communications in Theoretical Physics》 2025年第2期110-118,共9页
Finding the optimal control is of importance to quantum metrology under a noisy environment.In this paper,we tackle the problem of finding the optimal control to enhance the performance of quantum metrology under an a... Finding the optimal control is of importance to quantum metrology under a noisy environment.In this paper,we tackle the problem of finding the optimal control to enhance the performance of quantum metrology under an arbitrary non-Markovian bosonic environment.By introducing an equivalent pseudomode model,the non-Markovian dynamic evolution is reduced to a Lindblad master equation,which helps us to calculate the gradient of quantum Fisher information and perform the gradient ascent algorithm to find the optimal control.Our approach is accurate and circumvents the need for the Born-Markovian approximation.As an example,we consider the frequency estimation of a spin with pure dephasing under two types of non-Markovian environments.By maximizing the quantum Fisher information at a fixed evolution time,we obtain the optimal multi-axis control,which results in a notable enhancement in quantum metrology.The advantage of our method lies in its applicability to the arbitrary non-Markovian bosonic environment. 展开更多
关键词 quantum metrology non-Markovian environment optimal control
原文传递
Extinction and Optimal Control of Stochastic Epidemic Model with Multiple Vaccinations and Time Delay
12
作者 YANG Rujie QIU Hong JU Xuewei 《数学理论与应用》 2025年第2期110-121,共12页
In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and co... In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and construct suitable functions to obtain sufficient conditions for disease extinction.Secondly,in order to effectively control the spread of the disease,appropriate control strategies are formulated by using optimal control theory.Finally,the results are verified by numerical simulation. 展开更多
关键词 Stochastic epidemic model Multiple vaccinations Extinction of disease Isolation delay optimal control
在线阅读 下载PDF
Inverse Reinforcement Learning Optimal Control for Takagi-Sugeno Fuzzy Systems
13
作者 Wenting SONG Shaocheng TONG 《Artificial Intelligence Science and Engineering》 2025年第2期134-146,共13页
Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,s... Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach. 展开更多
关键词 Takagi-Sugeno fuzzy systems learnerexpert framework inverse reinforcement learning algorithm optimal control
在线阅读 下载PDF
Optimal Impulse Control and Impulse Game for Continuous-Time Deterministic Systems:A Review
14
作者 Chuandong LI Wenxuan WANG 《Artificial Intelligence Science and Engineering》 2025年第3期208-219,共12页
Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This r... Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This review synthesizes the theoretical advancements,computational approaches,emerging challenges,and possible research directions in the field.Firstly,we briefly review the fundamental theory of continuous-time optimal control,including Pontryagin's maximum principle(PMP)and dynamic programming principle(DPP).Secondly,we present the foundational results in optimal impulse control,including necessary conditions and sufficient conditions.Thirdly,we systematize impulse game methodologies,from Nash equilibrium existence theory to the connection between Nash equilibrium and systems stability.Fourthly,we summarize the numerical algorithms including the intelligent computation approaches.Finally,we examine the new trends and challenges in theory and applications as well as computational considerations. 展开更多
关键词 optimal impulse control impulse game Pontryagin's maximum principle dynamic programming principle
在线阅读 下载PDF
Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
15
作者 Xiongding Liu Xiaodan Zhao +1 位作者 Xiaojing Zhong Wu Wei 《Chinese Physics B》 2025年第6期262-274,共13页
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d... This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19. 展开更多
关键词 epidemic spreading SEIQR model stability and sensitivity analysis heterogeneous complex networks optimal control
原文传递
Rapid optimal control law generation: an MoE based method
16
作者 ZHANG Tengfei SU Hua +2 位作者 GONG Chunlin YANG Sizhi BAI Shaobo 《Journal of Systems Engineering and Electronics》 2025年第1期280-291,共12页
To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target... To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model.Therefore, the modeling idea of the mixture of experts(MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis(PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement. 展开更多
关键词 optimal control mixture of experts(MoE) K-MEANS Kriging model neural network classification principal component analysis(PCA)
在线阅读 下载PDF
AN OPTIMAL CONTROL PROBLEM FOR A LOTKA-VOLTERRA COMPETITION MODEL WITH CHEMO-REPULSION 被引量:1
17
作者 Diana I.HERNÁNDEZ Diego A.RUEDA-GOMEZ Élder J.VILLAMIZAR-ROA 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期721-751,共31页
In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in... In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments. 展开更多
关键词 LOTKA-VOLTERRA chemo-repulsion optimal control optimality conditions
在线阅读 下载PDF
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
18
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
19
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
Analytic optimal pose tracking control in close-range proximity operations with a non-cooperative target 被引量:1
20
作者 Caisheng WEI Guanhua HUANG +1 位作者 Zeyang YIN Qifeng CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期410-425,共16页
This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknow... This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme. 展开更多
关键词 optimal control Close-range proximity operation Non-cooperative space target Coupled attitude and orbit control Iterative sequential action control
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部