期刊文献+
共找到916,229篇文章
< 1 2 250 >
每页显示 20 50 100
Balanced Optimization of Dimensional Accuracy and Printing Efficiency in FDM Based on Data-Driven Modeling
1
作者 Liu Changhui Li Hao +5 位作者 Yu Chunlong Liao Xueru Liu Xiaojia Sun Jianzhi Tang Qirong Yu Min 《Additive Manufacturing Frontiers》 2025年第2期97-110,共14页
Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring... Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM. 展开更多
关键词 Fused deposition modeling Dimensional accuracy Process parameters Printing efficiency Balanced optimization Sustainable manufacturing
在线阅读 下载PDF
Augmented Industrial Data-Driven Modeling Under the Curse of Dimensionality 被引量:2
2
作者 Xiaoyu Jiang Xiangyin Kong Zhiqiang Ge 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第6期1445-1461,共17页
The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased si... The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications. 展开更多
关键词 Index Terms—Curse of dimensionality data augmentation data-driven modeling industrial processes machine learning
在线阅读 下载PDF
Data-driven modeling of a four-dimensional stochastic projectile system
3
作者 Yong Huang Yang Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期157-162,共6页
The dynamical modeling of projectile systems with sufficient accuracy is of great difficulty due to high-dimensional space and various perturbations.With the rapid development of data science and scientific tools of m... The dynamical modeling of projectile systems with sufficient accuracy is of great difficulty due to high-dimensional space and various perturbations.With the rapid development of data science and scientific tools of measurement recently,there are numerous data-driven methods devoted to discovering governing laws from data.In this work,a data-driven method is employed to perform the modeling of the projectile based on the Kramers–Moyal formulas.More specifically,the four-dimensional projectile system is assumed as an It?stochastic differential equation.Then the least square method and sparse learning are applied to identify the drift coefficient and diffusion matrix from sample path data,which agree well with the real system.The effectiveness of the data-driven method demonstrates that it will become a powerful tool in extracting governing equations and predicting complex dynamical behaviors of the projectile. 展开更多
关键词 data-driven modeling machine learning projectile systems Kramers–Moyal formulas
原文传递
Data-driven modeling of power system dynamics:Challenges,state of the art,and future work
4
作者 Heqing Huang Yuzhang Lin +3 位作者 Yifan Zhou Yue Zhao Peng Zhang Lingling Fan 《iEnergy》 2023年第3期200-221,共22页
With the continual deployment of power-electronics-interfaced renewable energy resources,increasing privacy concerns due to deregulation of electricity markets,and the diversification of demand-side activities,traditi... With the continual deployment of power-electronics-interfaced renewable energy resources,increasing privacy concerns due to deregulation of electricity markets,and the diversification of demand-side activities,traditional knowledge-based power system dynamic modeling methods are faced with unprecedented challenges.Data-driven modeling has been increasingly studied in recent years because of its lesser need for prior knowledge,higher capability of handling large-scale systems,and better adaptability to variations of system operating conditions.This paper discusses about the motivations and the generalized process of datadriven modeling,and provides a comprehensive overview of various state-of-the-art techniques and applications.It also comparatively presents the advantages and disadvantages of these methods and provides insight into outstanding challenges and possible research directions for the future. 展开更多
关键词 data-driven modeling machine learning model construction parameter identification power system dynamics system identification
在线阅读 下载PDF
Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network
5
作者 Jianyong Ao Yanping Li +2 位作者 Shengqing Hu Songyu Gao Qi Yao 《Energy Engineering》 EI 2024年第12期3825-3841,共17页
Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solv... Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solve this problem,this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis,feature selection,and model construction.In the mechanism analysis part,the generation mechanism of blade loads and the load theoretical calculationmethod based on material damage theory are analyzed,and four measurable operating state parameters related to blade loads are screened;in the feature extraction part,15 characteristic indicators of each screened parameter are extracted in the time and frequency domain,and feature selection is completed through correlation analysis with blade loads to determine the input parameters of data-driven modeling;in the model construction part,a deep neural network based on feedforward and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating parameter characteristics and blade loads.The results show that the proposed method mines the wind turbine operating state characteristics highly correlated with the blade load,such as the standard deviation of wind speed.The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load and shows a better fitting level for untrained out-of-sample data than the traditional scheme.Based on the mean absolute percentage error calculation,the modeling accuracy of the two blade loads can reach more than 90%and 80%,respectively,providing a good foundation for the subsequent optimization control to suppress the blade load. 展开更多
关键词 Wind turbine BLADE fatigue load modeling deep neural network
在线阅读 下载PDF
Data-driven modeling and sensitivity analysis of pressure differential deviations in pharmaceutical cleanrooms under static conditions and dynamic disturbances
6
作者 Yufan Chang Jie Zong +5 位作者 Yan Hu Zhengtao Ai Weichao Zhang Wenxuan Zhao Zhongbing Liu Rongpeng Zhang 《Building Simulation》 2025年第8期2019-2038,共20页
Pressure differential deviations under static conditions and pressure convergence fluctuations under dynamic disturbances are widely reported problems with pressure differential control in pharmaceutical cleanrooms,ye... Pressure differential deviations under static conditions and pressure convergence fluctuations under dynamic disturbances are widely reported problems with pressure differential control in pharmaceutical cleanrooms,yet their underlying mechanisms and key reasons remain insufficiently explored.This study performed a field survey and model-based simulations to identify the major influencing parameters and quantify their influence on pressure differentials.Twelve pharmaceutical cleanrooms with varying environmental control parameters were included in the field survey,all of which were served by a variable air volume(VAV)ventilation system.Large deviations between actual and design pressure differentials were found,ranging from 10%to 42.5%,and a total of 24 uncertain parameters and their respective uncertainty ranges were identified.Based on the field survey,a data-driven pressure differential response model was developed using MATLAB/Simulink platform.The model fully took into account the system dynamics and facilitated real-time monitoring and control of the pressure differential.Sobol-based sensitivity analysis was then conducted to identify key influencing parameters of pressure differential deviations.The simulated results revealed that static pressure differential deviations were predominantly influenced by pressure sensing accuracy,exhaust airflow accuracy,and duct impedance,while dynamic disturbances were mainly driven by room envelope airtightness and supply airflow accuracy.The interactions between connected zones were pronounced.Rooms with higher branch duct impedance experienced smaller pressure differential deviations due to natural buffering characteristics,while the parameter uncertainties in these rooms significantly affected pressure differential in other rooms.These findings offer practical guidance for the design and operation of precise pressure differential control in pharmaceutical cleanrooms. 展开更多
关键词 pharmaceutical cleanroom pressure differential field survey data-driven modeling sensitivity analysis
原文传递
Modeling of Precipitation over Africa:Progress,Challenges,and Prospects
7
作者 A.A.AKINSANOLA C.N.WENHAJI +21 位作者 R.BARIMALALA P.-A.MONERIE R.D.DIXON A.T.TAMOFFO M.O.ADENIYI V.ONGOMA I.DIALLO M.GUDOSHAVA C.M.WAINWRIGHT R.JAMES K.C.SILVERIO A.FAYE S.S.NANGOMBE M.W.POKAM D.A.VONDOU N.C.G.HART I.PINTO M.KILAVI S.HAGOS E.N.RAJAGOPAL R.K.KOLLI S.JOSEPH 《Advances in Atmospheric Sciences》 2026年第1期59-86,共28页
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha... In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain. 展开更多
关键词 RAINFALL MONSOON climate modeling CORDEX CMIP6 convection-permitting models
在线阅读 下载PDF
Data-driven modeling of opencircuit voltage hysteresis for LiFePO_(4)batteries with conditional generative adversarial network
8
作者 Lisen Yan Jun Peng +4 位作者 Zeyu Zhu Heng Li Zhiwu Huang Dirk Uwe Sauer Weihan Li 《Energy and AI》 2025年第2期73-83,共11页
The hysteresis effect represents the difference in open circuit voltage(OCV)between the charge and discharge processes of batteries.An accurate estimation of open circuit voltage considering hysteresis is critical for... The hysteresis effect represents the difference in open circuit voltage(OCV)between the charge and discharge processes of batteries.An accurate estimation of open circuit voltage considering hysteresis is critical for precise modeling of LiFePO_(4)batteries.However,the intricate influence of state-of-charge(SOC),temperature,and battery aging have posed significant challenges for hysteresis modeling,which have not been comprehensively considered in existing studies.This paper proposes a data-driven approach with adversarial learning to model hysteresis under diverse conditions,addressing the intricate dependencies on SOC,temperature,and battery aging.First,a comprehensive experimental scheme is designed to collect hysteresis dataset under diverse SOC paths,temperatures and aging states.Second,the proposed data-driven model integrates a conditional generative adversarial network with long short-term memory networks to enhance the model’s accuracy and adaptability.The generator and discriminator are designed based on LSTM networks to capture the dependency of hysteresis on historical SOC and conditional information.Third,the conditional matrix,incorporating temperature,health state,and historical paths,is constructed to provide the scenario-specific information for the adversarial network,thereby enhancing the model’s adaptability.Experimental results demonstrate that the proposed model achieves a voltage error of less than 3.8 mV across various conditions,with accuracy improvements of 31.3–48.7%compared to three state-of-the-art models. 展开更多
关键词 Lithium iron phosphate(LFP)batteries Battery modeling Opencircuit voltage Hysteresis modeling data-driven
在线阅读 下载PDF
Data-Driven Modeling of Aero-Derivative Gas Turbine Start-up
9
作者 WANG Zinan ZHANG Yuhao +1 位作者 ZENG Boyang TIAN Zhen 《Journal of Thermal Science》 2025年第5期1750-1757,共8页
A data-driven modelling method for predicting the aero-derivative gas turbine start-up performance has been developed. The test data are used to correct the compressor and turbine sub-idle maps based on extrapolation,... A data-driven modelling method for predicting the aero-derivative gas turbine start-up performance has been developed. The test data are used to correct the compressor and turbine sub-idle maps based on extrapolation, enhancing the accuracy within the whole sub-idle range. The hydraulic starter and temperature lag models are concluded in this method. By the start-up component maps, hydraulic power and fuel supply, the start-up process can be simulated, and the performance characteristics of the gas turbine and components can be calculated. The model is verified by three sets of test data on different environmental operation condition. The error of start-up times, speeds, temperatures and pressures between the start-up simulation and test data are within 10%, showing a high modeling accuracy. 展开更多
关键词 gas turbine component characteristic extrapolation startup modeling data-driven characteristic map correction
原文传递
Impedance Dataset Optimization Method for Data-driven Modeling of Renewable Power Generation Equipment Considering Multi-operation Conditions
10
作者 Han Li Heng Nian +1 位作者 Bin Hu Zhen He 《Journal of Modern Power Systems and Clean Energy》 2025年第5期1642-1652,共11页
The data-driven approaches have been extensively developed for multi-operation impedance modeling of the renewable power generation equipment(RPGE).However,due to the black box of RPGE,the dataset used for establishin... The data-driven approaches have been extensively developed for multi-operation impedance modeling of the renewable power generation equipment(RPGE).However,due to the black box of RPGE,the dataset used for establishing impedance model lacks theoretical guidance for data generation,which reduces data quality and results in a large amount of data redundancy.To address this issue,this paper proposes an impedance dataset optimization method for data-driven modeling of RPGE considering multi-operation conditions.The objective is to improve the data quality of the impedance dataset,thereby reflecting the overall impedance characteristics with a reduced data amount.Firstly,the impact of operation conditions on impedance is evaluated to optimize the selection of operating points.Secondly,at each operating point,the frequency distribution is designed to reveal the impedance characteristics with fewer measurement points.Finally,a serial update method for measured datasets and the multi-operation impedance model is developed to further refine the dataset.The experiments based on control-hardware-in-loop(CHIL)are conducted to verify the effectiveness of the proposed method. 展开更多
关键词 Renewable power generation equipment(RPGE) operating point impedance modeling data-driven dataset optimization
原文传递
Data-driven intelligent modeling of unconfined compressive strength of heavy metal-contaminated soil
11
作者 Syed Taseer Abbas Jaffar Xiangsheng Chen +3 位作者 Xiaohua Bao Muhammad Nouman Amjad Raja Tarek Abdoun Waleed El-Sekelly 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1801-1815,共15页
This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC)... This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC).For dataset collection,an extensive experimental program was designed to estimate the unconfined compressive strength(Qu)of heavy metal-contaminated soils collected from awide range of land use pattern,i.e.residential,industrial and roadside soils.Accordingly,a robust comparison of predictive performances of four data-driven models including extreme learning machines(ELMs),gene expression programming(GEP),random forests(RFs),and multiple linear regression(MLR)has been presented.For completeness,a comprehensive experimental database has been established and partitioned into 80%for training and 20%for testing the developed models.Inputs included varying levels of heavy metals like Cd,Cu,Cr,Pb and Zn,along with OPC.The results revealed that the GEP model outperformed its counterparts:explaining approximately 96%of the variability in both training(R2=0.964)and testing phases(R^(2)=0.961),and thus achieving the lowest RMSE and MAE values.ELM performed commendably but was slightly less accurate than GEP whereas MLR had the lowest performance metrics.GEP also provided the benefit of traceable mathematical equation,enhancing its applicability not just as a predictive but also as an explanatory tool.Despite its insights,the study is limited by its focus on a specific set of heavy metals and urban soil samples of a particular region,which may affect the generalizability of the findings to different contamination profiles or environmental conditions.The study recommends GEP for predicting Qu in heavy metal-contaminated soils,and suggests further research to adapt these models to different environmental conditions. 展开更多
关键词 Contaminated soil Heavy metals Machine learning Predictive modeling Compressive strength
在线阅读 下载PDF
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
12
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling Finite element method Residual neural networks
在线阅读 下载PDF
A Data-Driven Systematic Review of the Metaverse in Transportation:Current Research,Computational Modeling,and Future Trends
13
作者 Cecilia Castro Victor Leiva Franco Basso 《Computer Modeling in Engineering & Sciences》 2025年第8期1481-1543,共63页
Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieve... Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieved,where critical technical gaps remain,and where future deployments should be integrated.Using a transparent protocol-driven screening process,we reviewed 1589 records and retained 101 peer-reviewed journal and conference articles(2021–2025)that explicitly frame their contributions within a transport-oriented metaverse.Our reviewreveals a predominantly exploratory evidence base.Among the 101 studies reviewed,17(16.8%)apply fuzzymulticriteria decision-making,36(35.6%)feature digital-twin visualizations or simulation-based testbeds,9(8.9%)present hardware-in-the-loop or field pilots,and only 4(4.0%)report performance metrics such as latency,throughput,or safety under realistic network conditions.Over time,the literature evolves fromearly conceptual sketches(2021–2022)through simulation-centered frameworks(2023)to nascent engineering prototypes(2024–2025).To clarify persistent gaps,we synthesize findings into four foundational layers—geometry and rendering,distributed synchronization,cryptographic integrity,and human factors—enumerating essential algorithms(homogeneous 4×4 transforms,Lamport clocks,Raft consensus,Merkle proofs,sweep-and-prune collision culling,Q-learning,and real-time ergonomic feedback loops).A worked bus-fleet prototype illustrates how blockchain-based ticketing,reinforcement learning-optimized traffic signals,and extended reality dispatch can be integrated into a live digital twin.This prototype is supported by a threephase rollout strategy.Advancing the transport metaverse from blueprint to operation requires open data schemas,reproducible edge–cloud performance benchmarks,cross-disciplinary cyber-physical threat models,and city-scale sandboxes that apply their mathematical foundations in real-world settings. 展开更多
关键词 Artificial intelligence blockchain computational modeling digital twins extended reality fuzzy MCDM machine learning metaverse reinforcement learning
在线阅读 下载PDF
Heterogeneous data-driven aerodynamic modeling based on physical feature embedding 被引量:3
14
作者 Weiwei ZHANG Xuhao PENG +1 位作者 Jiaqing KOU Xu WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期1-6,共6页
Aerodynamic surrogate modeling mostly relies only on integrated loads data obtained from simulation or experiment,while neglecting and wasting the valuable distributed physical information on the surface.To make full ... Aerodynamic surrogate modeling mostly relies only on integrated loads data obtained from simulation or experiment,while neglecting and wasting the valuable distributed physical information on the surface.To make full use of both integrated and distributed loads,a modeling paradigm,called the heterogeneous data-driven aerodynamic modeling,is presented.The essential concept is to incorporate the physical information of distributed loads as additional constraints within the end-to-end aerodynamic modeling.Towards heterogenous data,a novel and easily applicable physical feature embedding modeling framework is designed.This framework extracts lowdimensional physical features from pressure distribution and then effectively enhances the modeling of the integrated loads via feature embedding.The proposed framework can be coupled with multiple feature extraction methods,and the well-performed generalization capabilities over different airfoils are verified through a transonic case.Compared with traditional direct modeling,the proposed framework can reduce testing errors by almost 50%.Given the same prediction accuracy,it can save more than half of the training samples.Furthermore,the visualization analysis has revealed a significant correlation between the discovered low-dimensional physical features and the heterogeneous aerodynamic loads,which shows the interpretability and credibility of the superior performance offered by the proposed deep learning framework. 展开更多
关键词 Transonic flow data-driven modeling Feature embedding Heterogenous data Feature visualization
原文传递
Data-driven intelligent modeling framework for the steam cracking process 被引量:2
15
作者 Qiming Zhao Kexin Bi Tong Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期237-247,共11页
Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and prof... Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and profit margin.Rapid advancements in machine learning research have recently enabled data-driven solutions to usher in a new era of process modeling.Meanwhile,its practical application to steam cracking is still hindered by the trade-off between prediction accuracy and computational speed.This research presents a framework for data-driven intelligent modeling of the steam cracking process.Industrial data preparation and feature engineering techniques provide computational-ready datasets for the framework,and feedstock similarities are exploited using k-means clustering.We propose LArge-Residuals-Deletion Multivariate Adaptive Regression Spline(LARD-MARS),a modeling approach that explicitly generates output formulas and eliminates potentially outlying instances.The framework is validated further by the presentation of clustering results,the explanation of variable importance,and the testing and comparison of model performance. 展开更多
关键词 Mathematical modeling data-driven modeling Process systems Steam cracking CLUSTERING Multivariate adaptive regression spline
在线阅读 下载PDF
End-to-end data-driven modeling framework for automated and trustworthy short-term building energy load forecasting
16
作者 Chaobo Zhang Jie Lu +1 位作者 Jiahua Huang Yang Zhao 《Building Simulation》 SCIE EI CSCD 2024年第8期1419-1437,共19页
Conventional automated machine learning(AutoML)technologies fall short in preprocessing low-quality raw data and adapting to varying indoor and outdoor environments,leading to accuracy reduction in forecasting short-t... Conventional automated machine learning(AutoML)technologies fall short in preprocessing low-quality raw data and adapting to varying indoor and outdoor environments,leading to accuracy reduction in forecasting short-term building energy loads.Moreover,their predictions are not transparent because of their black box nature.Hence,the building field currently lacks an AutoML framework capable of data quality enhancement,environment self-adaptation,and model interpretation.To address this research gap,an improved AutoML-based end-to-end data-driven modeling framework is proposed.Bayesian optimization is applied by this framework to find an optimal data preprocessing process for quality improvement of raw data.It bridges the gap where conventional AutoML technologies cannot automatically handle missing data and outliers.A sliding window-based model retraining strategy is utilized to achieve environment self-adaptation,contributing to the accuracy enhancement of AutoML technologies.Moreover,a local interpretable model-agnostic explanations-based approach is developed to interpret predictions made by the improved framework.It overcomes the poor interpretability of conventional AutoML technologies.The performance of the improved framework in forecasting one-hour ahead cooling loads is evaluated using two-year operational data from a real building.It is discovered that the accuracy of the improved framework increases by 4.24%–8.79%compared with four conventional frameworks for buildings with not only high-quality but also low-quality operational data.Furthermore,it is demonstrated that the developed model interpretation approach can effectively explain the predictions of the improved framework.The improved framework offers a novel perspective on creating accurate and reliable AutoML frameworks tailored to building energy load prediction tasks and other similar tasks. 展开更多
关键词 building energy load forecasting end-to-end data-driven modeling automated machine learning Bayesian optimization model retraining model interpretation
原文传递
Experimental demonstration of SnO_(2) nanofiber-based memristors and their data-driven modeling for nanoelectronic applications
17
作者 Soumi Saha Madadi Chetan Kodand Reddy +6 位作者 Tati Sai Nikhil Kaushik Burugupally Sanghamitra DebRoy Akshay Salimath Venkat Mattela Surya Shankar Dan Parikshit Sahatiya 《Chip》 EI 2023年第4期142-153,共12页
This paper demonstrated the fabrication,characterization,datadriven modeling,and practical application of a 1D SnO_(2)nanofiber-based memristor,in which a 1D SnO_(2)active layer wassandwiched between silver(Ag)and alu... This paper demonstrated the fabrication,characterization,datadriven modeling,and practical application of a 1D SnO_(2)nanofiber-based memristor,in which a 1D SnO_(2)active layer wassandwiched between silver(Ag)and aluminum(Al)electrodes.Thisdevice yielded a very high ROFF:RON of~104(ION:IOFF of~105)with an excellent activation slope of 10 mV/dec,low set voltage ofVSET~1.14 V and good repeatability.This paper physically explained the conduction mechanism in the layered SnO_(2)nanofiber-basedmemristor.The conductive network was composed of nanofibersthat play a vital role in the memristive action,since more conductive paths could facilitate the hopping of electron carriers.Energyband structures experimentally extracted with the adoption of ultraviolet photoelectron spectroscopy strongly support the claimsreported in this paper.An machine learning(ML)–assisted,datadriven model of the fabricated memristor was also developedemploying different popular algorithms such as polynomialregression,support vector regression,k nearest neighbors,andartificial neural network(ANN)to model the data of the fabricateddevice.We have proposed two types of ANN models(type I andtype II)algorithms,illustrated with a detailed flowchart,to modelthe fabricated memristor.Benchmarking with standard ML techniques shows that the type II ANN algorithm provides the bestmean absolute percentage error of 0.0175 with a 98%R^(2)score.The proposed data-driven model was further validated with the characterization results of similar new memristors fabricated adoptingthe same fabrication recipe,which gave satisfactory predictions.Lastly,the ANN type II model was applied to design and implementsimple AND&OR logic functionalities adopting the fabricatedmemristors with expected,near-ideal characteristics. 展开更多
关键词 Nanofiber-based memristors data-driven modeling Artificial neural network(ANN) SnO_(2)
原文传递
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
18
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Hybrid Data-Driven and Mechanistic Modeling Approaches for Multiscale Material and Process Design 被引量:10
19
作者 Teng Zhou Rafiqul Gani Kai Sundmacher 《Engineering》 SCIE EI 2021年第9期1231-1238,共8页
The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this chal... The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this challenge.Traditionally,new advanced materials are found empirically or through trial-and-error approaches.As theoretical methods and associated tools are being continuously improved and computer power has reached a high level,it is now efficient and popular to use computational methods to guide material selection and design.Due to the strong interaction between material selection and the operation of the process in which the material is used,it is essential to perform material and process design simultaneously.Despite this significant connection,the solution of the integrated material and process design problem is not easy because multiple models at different scales are usually required.Hybrid modeling provides a promising option to tackle such complex design problems.In hybrid modeling,the material properties,which are computationally expensive to obtain,are described by data-driven models,while the well-known process-related principles are represented by mechanistic models.This article highlights the significance of hybrid modeling in multiscale material and process design.The generic design methodology is first introduced.Six important application areas are then selected:four from the chemical engineering field and two from the energy systems engineering domain.For each selected area,state-ofthe-art work using hybrid modeling for multiscale material and process design is discussed.Concluding remarks are provided at the end,and current limitations and future opportunities are pointed out. 展开更多
关键词 data-driven Surrogate model Machine learning Hybrid modeling Material design Process optimization
在线阅读 下载PDF
Full field reservoir modeling of shale assets using advanced data-driven analytics 被引量:10
20
作者 Soodabeh Esmaili Shahab D.Mohaghegh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期11-20,共10页
Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorpt... Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset. 展开更多
关键词 Reservoir modeling Data driven reservoir modeling Top-down modeling Shale reservoir modeling SHALE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部