期刊文献+
共找到6,127篇文章
< 1 2 250 >
每页显示 20 50 100
A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping:Physically-based probabilistic model with convolutional neural network 被引量:1
1
作者 Hong-Zhi Cui Bin Tong +2 位作者 Tao Wang Jie Dou Jian Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4933-4951,共19页
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region... Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale. 展开更多
关键词 Rainfall landslides Landslide susceptibility mapping hybrid model Physically-based model Convolution neural network(CNN) Probability of failure(POF)
在线阅读 下载PDF
Hybrid prediction model for strip width based on improved mechanism and data-driven model
2
作者 Jia-liang Wang Jing-cheng Wang +2 位作者 Chao-bo Chen Kang-bo Dang Song Gao 《Journal of Iron and Steel Research International》 2025年第3期720-732,共13页
Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calc... Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control. 展开更多
关键词 Hot-rolled strip Steel width Artificial neural network Mechanism model hybrid model
原文传递
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
3
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
4
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
HyPepTox-Fuse:An interpretable hybrid framework for accurate peptide toxicity prediction fusing protein language model-based embeddings with conventional descriptors 被引量:1
5
作者 Duong Thanh Tran Nhat Truong Pham +2 位作者 Nguyen Doan Hieu Nguyen Leyi Wei Balachandran Manavalan 《Journal of Pharmaceutical Analysis》 2025年第8期1873-1886,共14页
Peptide-based therapeutics hold great promise for the treatment of various diseases;however,their clinical application is often hindered by toxicity challenges.The accurate prediction of peptide toxicity is crucial fo... Peptide-based therapeutics hold great promise for the treatment of various diseases;however,their clinical application is often hindered by toxicity challenges.The accurate prediction of peptide toxicity is crucial for designing safe peptide-based therapeutics.While traditional experimental approaches are time-consuming and expensive,computational methods have emerged as viable alternatives,including similarity-based and machine learning(ML)-/deep learning(DL)-based methods.However,existing methods often struggle with robustness and generalizability.To address these challenges,we propose HyPepTox-Fuse,a novel framework that fuses protein language model(PLM)-based embeddings with conventional descriptors.HyPepTox-Fuse integrates ensemble PLM-based embeddings to achieve richer peptide representations by leveraging a cross-modal multi-head attention mechanism and Transformer architecture.A robust feature ranking and selection pipeline further refines conventional descriptors,thus enhancing prediction performance.Our framework outperforms state-of-the-art methods in cross-validation and independent evaluations,offering a scalable and reliable tool for peptide toxicity prediction.Moreover,we conducted a case study to validate the robustness and generalizability of HyPepTox-Fuse,highlighting its effectiveness in enhancing model performance.Furthermore,the HyPepTox-Fuse server is freely accessible at https://balalab-skku.org/HyPepTox-Fuse/and the source code is publicly available at https://github.com/cbbl-skku-org/HyPepTox-Fuse/.The study thus presents an intuitive platform for predicting peptide toxicity and supports reproducibility through openly available datasets. 展开更多
关键词 Peptide toxicity hybrid framework Multi-head attention Transformer Deep learning Machine learning Protein language model
暂未订购
Integrating geographic information system and 3D virtual reality for optimized modeling of large-scale photovoltaic wind hybrid system:A case study in Dakhla City,Morocco 被引量:1
6
作者 Elmostafa Achbab Rachid Lambarki +1 位作者 Hassan Rhinane Dennoun Saifaoui 《Energy Geoscience》 2025年第2期174-193,共20页
This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)syste... This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact. 展开更多
关键词 Geographic information systems 3D virtual reality(VR)modeling Wind energy Solar photovoltaic(PV)energy hybrid renewable energy system assessment
在线阅读 下载PDF
Hybrid ecophysiological growth model for deciduous Populus tomentosa plantation in northern China
7
作者 Serajis Salekin Mark Bloomberg +4 位作者 Benye Xi Jinqiang Liu Yang Liu Doudou Li Euan G.Mason 《Forest Ecosystems》 2025年第1期112-120,共9页
Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to... Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to be established by integrating robust predictions and an understanding of mechanisms underlying tree growth.Hybrid ecophysiological models,such as potentially useable light sum equation(PULSE)models,are useful tools requiring minimal input data that meet the requirements of SRF.PULSE models have been tested and calibrated for different evergreen conifers and broadleaves at both juvenile and mature stages of tree growth with coarse soil and climate data.Therefore,it is prudent to question:can adding detailed soil and climatic data reduce errors in this type of model?In addition,PULSE techniques have not been used to model deciduous species,which are a challenge for ecophysiological models due to their phenology.This study developed a PULSE model for a clonal Populus tomentosa plantation in northern China using detailed edaphic and climatic data.The results showed high precision and low bias in height(m)and basal area(m^(2)·ha^(-1))predictions.While detailed edaphoclimatic data produce highly precise predictions and a good mechanistic understanding,the study suggested that local climatic data could also be employed.The study showed that PULSE modelling in combination with coarse level of edaphic and local climate data resulted in reasonably precise tree growth prediction and minimal bias. 展开更多
关键词 Growth-yield model Populus species hybrid ecophysiological modelling Deciduous trees PHENOLOGY
在线阅读 下载PDF
A hybrid coupled model for the tropical Pacific constructed by integrating ROMS with a statistical atmospheric model
8
作者 Rong-Hua ZHANG Wenzhe ZHANG +4 位作者 Yang YU Yinnan LI Feng TIAN Chuan GAO Hongna WANG 《Journal of Oceanology and Limnology》 2025年第4期1037-1055,共19页
Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit signifi... Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific. 展开更多
关键词 Regional Ocean modeling System(ROMS) statistical atmospheric model hybrid coupled model El Niño-Southern Oscillation(ENSO) model evaluation tropical Pacific
在线阅读 下载PDF
Segmentation of CAD models using hybrid representation
9
作者 Claude UWIMANA Shengdi ZHOU +4 位作者 Limei YANG Zhuqing LI Norbelt MUTAGISHA Edouard NIYONGABO Bin ZHOU 《虚拟现实与智能硬件(中英文)》 2025年第2期188-202,共15页
In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using singl... In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using single representations,such as meshes,CAD,and point clouds.However,existing methods cannot effectively combine different three-dimensional model types for the direct conversion,alignment,and integrity maintenance of geometric and topological information.Hence,we propose an integration approach that combines the geometric accuracy of CAD data with the flexibility of mesh representations,as well as introduce a unique hybrid representation that combines CAD and mesh models to enhance segmentation accuracy.To combine these two model types,our hybrid system utilizes advanced-neural-network techniques to convert CAD models into mesh models.For complex CAD models,model segmentation is crucial for model retrieval and reuse.In partial retrieval,it aims to segment a complex CAD model into several simple components.The first component of our hybrid system involves advanced mesh-labeling algorithms that harness the digitization of CAD properties to mesh models.The second component integrates labelled face features for CAD segmentation by leveraging the abundant multisemantic information embedded in CAD models.This combination of mesh and CAD not only refines the accuracy of boundary delineation but also provides a comprehensive understanding of the underlying object semantics.This study uses the Fusion 360 Gallery dataset.Experimental results indicate that our hybrid method can segment these models with higher accuracy than other methods that use single representations. 展开更多
关键词 B-RepNet hybrid segmentation CAD models classification MeshCNN MeshCAD-Net
在线阅读 下载PDF
An artificial neural network-based data-driven constitutive model of shape memory alloys
10
作者 Xingyu Zhou Ziang Liu +1 位作者 Chao Yu Guozheng Kang 《Acta Mechanica Sinica》 2025年第8期108-125,共18页
The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformatio... The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models. 展开更多
关键词 Shape memory alloys Constitutive model data-driven Artificial neural network
原文传递
Overview of Data-Driven Models for Wind Turbine Wake Flows
11
作者 Maokun Ye Min Li +2 位作者 Mingqiu Liu Chengjiang Xiao Decheng Wan 《哈尔滨工程大学学报(英文版)》 2025年第1期1-20,共20页
With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbin... With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbine wakes.These models leverage the ability to capture complex,high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than physics-driven models.As a result,data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake behavior and turbine power output.This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake modeling that employ data-driven approaches.It begins by defining and classifying machine learning methods to facilitate a clearer understanding of the reviewed literature.Subsequently,the related studies are categorized into four key areas:wind turbine power prediction,data-driven analytic wake models,wake field reconstruction,and the incorporation of explicit physical constraints.The accuracy of data-driven models is influenced by two primary factors:the quality of the training data and the performance of the model itself.Accordingly,both data accuracy and model structure are discussed in detail within the review. 展开更多
关键词 data-driven Machine learning Artificial neural networks Wind turbine wake Wake models
在线阅读 下载PDF
Parameter Estimation of a Tumor Growth Model under Data-driven Approach and Its Numerical Solution in Matlab
12
作者 Zhuo Chen Yihan Zeng +3 位作者 Wei Chen Ruixian Zheng Zejun Du Meibao Ge 《Journal of Clinical and Nursing Research》 2025年第4期50-56,共7页
This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor gro... This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor growth is established.Nonlinear fitting is employed to obtain the optimal parameter estimation of the mathematical model,and the numerical solution is carried out using the Matlab software.By comparing the clinical data with the simulation results,a good agreement is achieved,which verifies the rationality and feasibility of the model. 展开更多
关键词 MATLAB Tumor growth model data-driven approach Ordinary differential equation
暂未订购
Enhancing patient rehabilitation predictions with a hybrid anomaly detection model:Density-based clustering and interquartile range methods
13
作者 Murad Ali Khan Jong-Hyun Jang +5 位作者 Naeem Iqbal Harun Jamil Syed Shehryar Ali Naqvi Salabat Khan Jae-Chul Kim Do-Hyeun Kim 《CAAI Transactions on Intelligence Technology》 2025年第4期983-1006,共24页
In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reve... In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reveals a pronounced focus on refining diagnostic accuracy,personalising treatment plans,and optimising resource allocation to enhance clinical outcomes.Nonetheless,this domain faces unique challenges,such as irregular data collection,inconsistent data quality,and patient-specific structural variations.This paper proposed a novel hybrid approach that integrates heuristic and stochastic methods for anomaly detection in patient clinical data to address these challenges.The strategy combines HPO-based optimal Density-Based Spatial Clustering of Applications with Noise for clustering patient exercise data,facilitating efficient anomaly identification.Subsequently,a stochastic method based on the Interquartile Range filters unreliable data points,ensuring that medical tools and professionals receive only the most pertinent and accurate information.The primary objective of this study is to equip healthcare pro-fessionals and researchers with a robust tool for managing extensive,high-dimensional clinical datasets,enabling effective isolation and removal of aberrant data points.Furthermore,a sophisticated regression model has been developed using Automated Machine Learning(AutoML)to assess the impact of the ensemble abnormal pattern detection approach.Various statistical error estimation techniques validate the efficacy of the hybrid approach alongside AutoML.Experimental results show that implementing this innovative hybrid model on patient rehabilitation data leads to a notable enhance-ment in AutoML performance,with an average improvement of 0.041 in the R2 score,surpassing the effectiveness of traditional regression models. 展开更多
关键词 anomaly detection deep learning density-based clustering hybrid model IQR regression
在线阅读 下载PDF
Hybrid Data-Driven and Mechanistic Modeling Approaches for Multiscale Material and Process Design 被引量:10
14
作者 Teng Zhou Rafiqul Gani Kai Sundmacher 《Engineering》 SCIE EI 2021年第9期1231-1238,共8页
The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this chal... The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this challenge.Traditionally,new advanced materials are found empirically or through trial-and-error approaches.As theoretical methods and associated tools are being continuously improved and computer power has reached a high level,it is now efficient and popular to use computational methods to guide material selection and design.Due to the strong interaction between material selection and the operation of the process in which the material is used,it is essential to perform material and process design simultaneously.Despite this significant connection,the solution of the integrated material and process design problem is not easy because multiple models at different scales are usually required.Hybrid modeling provides a promising option to tackle such complex design problems.In hybrid modeling,the material properties,which are computationally expensive to obtain,are described by data-driven models,while the well-known process-related principles are represented by mechanistic models.This article highlights the significance of hybrid modeling in multiscale material and process design.The generic design methodology is first introduced.Six important application areas are then selected:four from the chemical engineering field and two from the energy systems engineering domain.For each selected area,state-ofthe-art work using hybrid modeling for multiscale material and process design is discussed.Concluding remarks are provided at the end,and current limitations and future opportunities are pointed out. 展开更多
关键词 data-driven Surrogate model Machine learning hybrid modeling Material design Process optimization
在线阅读 下载PDF
Hybrid modelling incorporating reaction and mechanistic data for accelerating the development of isooctanol oxidation
15
作者 Xin Zhou Ce Liu +9 位作者 Zhibo Zhang Xinrui Song Haiyan Luo Weitao Zhang Lianying Wu Hui Zhao Yibin Liu Xiaobo Chen Hao Yan Chaohe Yang 《Chinese Journal of Chemical Engineering》 2025年第4期166-183,共18页
Alcohol oxidation is a widely used green chemical reaction.The reaction process produces flammable and explosive hydrogen,so the design of the reactor must meet stringent safety requirements.Based on the limited exper... Alcohol oxidation is a widely used green chemical reaction.The reaction process produces flammable and explosive hydrogen,so the design of the reactor must meet stringent safety requirements.Based on the limited experimental data,utilizing the traditional numerical method of computational fluid dynamics(CFD)to simulate the gas-liquid two-phase flow reactor can mitigate the risk of danger under varying working conditions.However,the calculation process is highly time-consuming.Therefore,by integrating process simulation,computational fluid dynamics,and deep learning technologies,an intelligent hybrid chemical model based on machine learning was proposed to expedite CFD calculations,enhance the prediction of flow fields,conversion rates,and concentrations inside the reactor,and offer insights for designing and optimizing the reactor for the alcohol oxidation system.The results show that the hybrid model based on the long and short-term memory neural network achieves 99.8%accuracy in conversion rate prediction and 99.9%accuracy in product concentration prediction.Through validation,the hybrid model is accelerated by about 360 times compared with instrumental analysis in conversion rate prediction and about 45 times compared with CFD calculation in concentration distribution prediction.This hybrid model can quickly predict the conversion rate and product concentration distribution in the gas-liquid two-phase flow reactor and provide a model reference for fast prediction and accurate control in the actual chemical production process. 展开更多
关键词 hybrid modelling Numerical simulation Deep learning Soft measurements Computational acceleration
在线阅读 下载PDF
A Hybrid LSTM-Single Candidate Optimizer Model for Short-Term Wind Power Prediction
16
作者 Mehmet Balci Emrah Dokur Ugur Yuzgec 《Computer Modeling in Engineering & Sciences》 2025年第7期945-968,共24页
Accurate prediction of wind energy plays a vital role in maintaining grid stability and supporting the broader shift toward renewable energy systems.Nevertheless,the inherently variable nature of wind and the intricac... Accurate prediction of wind energy plays a vital role in maintaining grid stability and supporting the broader shift toward renewable energy systems.Nevertheless,the inherently variable nature of wind and the intricacy of high-dimensional datasets pose major obstacles to reliable forecasting.To address these difficulties,this study presents an innovative hybrid method for short-term wind power prediction by combining a Long Short-Term Memory(LSTM)network with a Single Candidate Optimizer(SCO)algorithm.In contrast to conventional techniques that rely on random parameter initialization,the proposed LSTM-SCO framework leverages the distinctive capability of SCO to work with a single candidate solution,thereby substantially reducing the computational overhead compared to traditional population-based metaheuristics.The performance of the model was benchmarked against various classical and deep learning models across datasets from three geographically diverse sites,using multiple evaluation metrics.Experimental findings demonstrate that the SCO-optimized model enhances prediction accuracy by up to 12.5%over standard LSTM implementations. 展开更多
关键词 LSTM wind forecasting hybrid forecasting model single candidate optimizer
在线阅读 下载PDF
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
17
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 Integrated learning algorithm Data intervals clustering Feature selection Application of artificial intelligence in distillation industry data-driven modelling
在线阅读 下载PDF
Integration of a hybrid vibration prediction model for railways into noise mapping software:methodology,assumptions and demonstration
18
作者 Pieter Reumers Geert Degrande +5 位作者 Geert Lombaert David JThompson Evangelos Ntotsios Pascal Bouvet Brice Nélain Andreas Nuber 《Railway Engineering Science》 2025年第1期1-26,共26页
Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping... Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium). 展开更多
关键词 Railway-induced vibration hybrid vibration prediction model Experimental validation Low-speed approximation
在线阅读 下载PDF
Model Predictive Control Method Based on Data-Driven Approach for Permanent Magnet Synchronous Motor Control System
19
作者 LI Songyang CHEN Wenbo WAN Heng 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期270-279,共10页
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands... Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) model predictive control(MPC) data-driven model predictive control(DDMPC)
原文传递
Comparison of processing speed of NRS-ANN hybrid and ANN models for oil production rate estimation of reservoir under waterflooding
20
作者 Paul Theophily Nsulangi Werneld Egno Ngongi +1 位作者 John Mbogo Kafuku Guan Zhen Liang 《Artificial Intelligence in Geosciences》 2025年第2期101-112,共12页
This study compared the predictive performance and processing speed of an artificial neural network(ANN)and a hybrid of a numerical reservoir simulation(NRS)and artificial neural network(NRS-ANN)models in estimating t... This study compared the predictive performance and processing speed of an artificial neural network(ANN)and a hybrid of a numerical reservoir simulation(NRS)and artificial neural network(NRS-ANN)models in estimating the oil production rate of the ZH86 reservoir block under waterflood recovery.The historical input variables:reservoir pressure,reservoir pore volume containing hydrocarbons,reservoir pore volume containing water and reservoir water injection rate used as inputs for ANN models.To create the NRS-ANN hybrid models,314 data sets extracted from the NRS model,which included reservoir pressure,reservoir pore volume containing hy-drocarbons,reservoir pore volume containing water and reservoir water injection rate were used.The output of the models was the historical oil production rate(HOPR in m^(3) per day)recorded from the ZH86 reservoir block.Models were developed using MATLAB R2021a and trained with 25 models in three replicate conditions(2,4 and 6),each at 1000 epochs.A comparative analysis indicated that,for all 25 models,the ANN outperformed the NRS-ANN in terms of processing speed and prediction performance.ANN models achieved an average of R^(2) and MAE of 0.8433 and 8.0964 m^(3)/day values,respectively,while NRS-ANN hybrid models achieved an average of R^(2) and MAE of 0.7828 and 8.2484 m^(3)/day values,respectively.In addition,ANN models achieved a processing speed of 49 epochs/sec,32 epochs/sec,and 24 epochs/sec after 2,4,and 6 replicates,respectively.Whereas the NRS-ANN hybrid models achieved lower average processing speeds of 45 epochs/sec,23 epochs/sec and 20 epochs/sec.In addition,the ANN optimal model outperforms the NRS-ANN model in terms of both processing speed and accuracy.The ANN optimal model achieved a speed of 336.44 epochs/sec,compared to the NRS-ANN hybrid optimal model,which achieved a speed of 52.16 epochs/sec.The ANN optimal model achieved lower RMSE and MAE values of 7.9291 m^(3)/day and 5.3855 m^(3)/day in the validation dataset compared with the hybrid ANS optimal model,which achieved 13.6821 m^(3)/day and 9.2047 m^(3)/day,respectively.The study also showed that the ANN optimal model consistently achieved higher R^(2) values:0.9472,0.9284 and 0.9316 in the training,test and validation data sets.Whereas the NRS-ANN hybrid optimal yielded lower R^(2) values of 0.8030,0.8622 and 0.7776 for the training,testing and validation datasets.The study showed that ANN models are a more effective and reliable tool,as they balance both processing speed and accuracy in estimating the oil production rate of the ZH86 reservoir block under the waterflooding recovery method. 展开更多
关键词 Oil production rate prediction Processing speed of the NRS-ANN and ANN models Performance of the NRS-ANN and ANN models Artificial Neural Network(ANN) hybrid model of NRS and ANN
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部