A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength p...A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines.展开更多
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai...Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.展开更多
When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding bia...When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis.展开更多
As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and s...As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF.展开更多
Background A photometric stereo method aims to recover the surface normal of a 3D object observed under varying light directions.It is an ill-defined problem because the general reflectance properties of the surface a...Background A photometric stereo method aims to recover the surface normal of a 3D object observed under varying light directions.It is an ill-defined problem because the general reflectance properties of the surface are unknown.Methods This paper reviews existing data-driven methods,with a focus on their technical insights into the photometric stereo problem.We divide these methods into two categories,per-pixel and all-pixel,according to how they process an image.We discuss the differences and relationships between these methods from the perspective of inputs,networks,and data,which are key factors in designing a deep learning approach.Results We demonstrate the performance of the models using a popular benchmark dataset.Conclusions Data-driven photometric stereo methods have shown that they possess a superior performance advantage over traditional methods.However,these methods suffer from various limitations,such as limited generalization capability.Finally,this study suggests directions for future research.展开更多
Degradation prediction of proton exchange membrane fuel cell(PEMFC)stack is of great significance for improving the rest useful life.In this study,a PEMFC system including a stack of 300 cells and subsystems has been ...Degradation prediction of proton exchange membrane fuel cell(PEMFC)stack is of great significance for improving the rest useful life.In this study,a PEMFC system including a stack of 300 cells and subsystems has been tested under semi-steady operations for about 931 h.Then,two different models are respectively established based on semi-empirical method and data-driven method to investigate the degradation of stack performance.It is found that the root mean square error(RMSE)of the semi-empirical model in predicting the stack voltage is around 1.0 V,while the predicted voltage has no local dynamic characteristics,which can only reflect the overall degradation trend of stack performance.The RMSE of short-term voltage degradation predicted by the DDM can be less than 1.0 V,and the predicted voltage has accurate local variation characteristics.However,for the long-term prediction,the error will accumulate with the iterations and the deviation of the predicted voltage begins to fluctuate gradually,and the RMSE for the long-term predictions can increase to 1.63 V.Based on the above characteristics of the two models,a hybrid prediction model is further developed.The prediction results of the semi-empirical model are used to modify the input of the data-driven model,which can effectively improve the oscillation of prediction results of the data-driven model during the long-term degradation.It is found that the hybrid model has good error distribution(RSEM=0.8144 V,R2=0.8258)and local performance dynamic characteristics which can be used to predict the process of long-term stack performance degradation.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysi...Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysis methods have limitations in dealing with these complex and interrelated factors,and it is difficult to fully reveal the actual contribution of each factor to the production.Machine learning-based methods explore the complex mapping relationships between large amounts of data to provide datadriven insights into the key factors driving production.In this study,a data-driven PCA-RF-VIM(Principal Component Analysis-Random Forest-Variable Importance Measures)approach of analyzing the importance of features is proposed to identify the key factors driving post-fracturing production.Four types of parameters,including log parameters,geological and reservoir physical parameters,hydraulic fracturing design parameters,and reservoir stimulation parameters,were inputted into the PCA-RF-VIM model.The model was trained using 6-fold cross-validation and grid search,and the relative importance ranking of each factor was finally obtained.In order to verify the validity of the PCA-RF-VIM model,a consolidation model that uses three other independent data-driven methods(Pearson correlation coefficient,RF feature significance analysis method,and XGboost feature significance analysis method)are applied to compare with the PCA-RF-VIM model.A comparison the two models shows that they contain almost the same parameters in the top ten,with only minor differences in one parameter.In combination with the reservoir characteristics,the reasonableness of the PCA-RF-VIM model is verified,and the importance ranking of the parameters by this method is more consistent with the reservoir characteristics of the study area.Ultimately,the ten parameters are selected as the controlling factors that have the potential to influence post-fracturing gas production,as the combined importance of these top ten parameters is 91.95%on driving natural gas production.Analyzing and obtaining these ten controlling factors provides engineers with a new insight into the reservoir selection for fracturing stimulation and fracturing parameter optimization to improve fracturing efficiency and productivity.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ...This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal b...The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal bundled power system, accurate data-driven analysis is necessary to maintain real-time balance between electricity supply and demand. By summarizing the development and characteristics of wind–thermal bundled power system in China and different countries, current research in this field can be clearly defined in two aspects: short-term wind power prediction for wind farms and performance evaluation of automatic generation control (AGC) for thermal power generation units. For short-term wind power prediction, it is recommended to focus on historical data preprocessing and artificial intelligence methods. The technical characteristics of different data-driven wind power prediction methods have been compared in detail. For performance evaluation of AGC units, a comprehensive analysis was conducted on current evaluation methods, including the “permitted-band” and “regulation mileage” methods, as well as the issue of evaluation failure in traditional evaluation methods in practical engineering. Finally, the relative optimal dynamic performance of AGC units was discussed and the future trend of data-driven research in wind–thermal bundled power system was summarized.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Text mining has emerged as a powerful strategy for extracting domain knowledge structure from large amounts of text data.To date,most text mining methods are restricted to specific literature information,resulting in ...Text mining has emerged as a powerful strategy for extracting domain knowledge structure from large amounts of text data.To date,most text mining methods are restricted to specific literature information,resulting in incomplete knowledge graphs.Here,we report a method that combines citation analysis with topic modeling to describe the hidden development patterns in the history of science.Leveraging this method,we construct a knowledge graph in the field of Raman spectroscopy.The traditional Latent DirichletAllocation model is chosen as the baseline model for comparison to validate the performance of our model.Our method improves the topic coherence with a minimum growth rate of 100%compared to the traditional text mining method.It outperforms the traditional text mining method on the diversity,and its growth rate ranges from 0 to 126%.The results show the effectiveness of rule-based tokenizer we designed in solving the word tokenizer problem caused by entity naming rules in the field of chemistry.It is versatile in revealing the distribution of topics,establishing the similarity and inheritance relationships,and identifying the important moments in the history of Raman spectroscopy.Our work provides a comprehensive tool for the science of science research and promises to offer new insights into the historical survey and development forecast of a research field.展开更多
For control systems with unknown model parameters,this paper proposes a data-driven iterative learning method for fault estimation.First,input and output data from the system under fault-free conditions are collected....For control systems with unknown model parameters,this paper proposes a data-driven iterative learning method for fault estimation.First,input and output data from the system under fault-free conditions are collected.By applying orthogonal triangular decomposition and singular value decomposition,a data-driven realization of the system's kernel representation is derived,based on this representation,a residual generator is constructed.Then,the actuator fault signal is estimated online by analyzing the system's dynamic residual,and an iterative learning algorithm is introduced to continuously optimize the residual-based performance function,thereby enhancing estimation accuracy.The proposed method achieves actuator fault estimation without requiring knowledge of model parameters,eliminating the time-consuming system modeling process,and allowing operators to focus on system optimization and decision-making.Compared with existing fault estimation methods,the proposed method demonstrates superior transient performance,steady-state performance,and real-time capability,reduces the need for manual intervention and lowers operational complexity.Finally,experimental results on a mobile robot verify the effectiveness and advantages of the method.展开更多
The element-free Galerkin(EFG)method,which constructs shape functions via moving least squares(MLS)approximation,represents a fundamental and widely studied meshless method in numerical computation.Although it achieve...The element-free Galerkin(EFG)method,which constructs shape functions via moving least squares(MLS)approximation,represents a fundamental and widely studied meshless method in numerical computation.Although it achieves high computational accuracy,the shape functions are more complex than those in the conventional finite element method(FEM),resulting in great computational requirements.Therefore,improving the computational efficiency of the EFG method represents an important research direction.This paper systematically reviews significant contributions fromdomestic and international scholars in advancing the EFGmethod.Including the improved element-free Galerkin(IEFG)method,various interpolating EFG methods,four distinct complex variable EFG methods,and a series of dimension splitting meshless methods.In the numerical examples,the effectiveness and efficiency of the three methods are validated by analyzing the solutions of the IEFG method for 3D steadystate anisotropic heat conduction,3D elastoplasticity,and large deformation problems,as well as the performance of two-dimensional splitting meshless methods in solving the 3D Helmholtz equation.展开更多
This paper reviews recent advancements in system identification methods for perturbed motorized systems,focusing on brushed DC motors,brushless DC motors,and permanent magnet synchronous motors.It examines data acquis...This paper reviews recent advancements in system identification methods for perturbed motorized systems,focusing on brushed DC motors,brushless DC motors,and permanent magnet synchronous motors.It examines data acquisition setups and evaluates conventional and metaheuristic optimization algorithms,highlighting their advantages,limitations,and applications.The paper explores emerging trends in model structures and parameter optimization techniques that address specific perturbations such as varying loads,noise,and friction.A comparative performance analysis is also included to assess several widely used optimization methods,including least squares(LS),particle swarm optimization(PSO),grey wolf optimizer(GWO),bat algorithm(BA),genetic algorithm(GA)and neural network for system identification of a specific case of a perturbed DC motor in both open-loop(OL)and closed-loop(CL)settings.Results show that GWO achieves the lowest error overall,excelling in OL scenarios,while PSO performs best in CL due to its synergy with feedback control.LS proves efficient in CL settings,whereas GA and BA rely heavily on feedback for improved performance.The paper also outlines potential research directions aimed at advancing motor modeling techniques,including integration of advanced machine learning methods,hybrid learning-based methods,and adaptive modeling techniques.These insights offer a foundation for advancing motor modeling techniques in real-world applications.展开更多
文摘A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines.
基金Project(2017G006-N)supported by the Project of Science and Technology Research and Development Program of China Railway Corporation。
文摘Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.
文摘When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants(52275471 and 52120105008)the Beijing Outstanding Young Scientist Program,and the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF.
文摘Background A photometric stereo method aims to recover the surface normal of a 3D object observed under varying light directions.It is an ill-defined problem because the general reflectance properties of the surface are unknown.Methods This paper reviews existing data-driven methods,with a focus on their technical insights into the photometric stereo problem.We divide these methods into two categories,per-pixel and all-pixel,according to how they process an image.We discuss the differences and relationships between these methods from the perspective of inputs,networks,and data,which are key factors in designing a deep learning approach.Results We demonstrate the performance of the models using a popular benchmark dataset.Conclusions Data-driven photometric stereo methods have shown that they possess a superior performance advantage over traditional methods.However,these methods suffer from various limitations,such as limited generalization capability.Finally,this study suggests directions for future research.
基金supported by the National Key Research and Development Program of China(Grant No.SQ2021YFE011145)the Science and Technology Development Program of Jilin Province(Grant No.20200501010GX).
文摘Degradation prediction of proton exchange membrane fuel cell(PEMFC)stack is of great significance for improving the rest useful life.In this study,a PEMFC system including a stack of 300 cells and subsystems has been tested under semi-steady operations for about 931 h.Then,two different models are respectively established based on semi-empirical method and data-driven method to investigate the degradation of stack performance.It is found that the root mean square error(RMSE)of the semi-empirical model in predicting the stack voltage is around 1.0 V,while the predicted voltage has no local dynamic characteristics,which can only reflect the overall degradation trend of stack performance.The RMSE of short-term voltage degradation predicted by the DDM can be less than 1.0 V,and the predicted voltage has accurate local variation characteristics.However,for the long-term prediction,the error will accumulate with the iterations and the deviation of the predicted voltage begins to fluctuate gradually,and the RMSE for the long-term predictions can increase to 1.63 V.Based on the above characteristics of the two models,a hybrid prediction model is further developed.The prediction results of the semi-empirical model are used to modify the input of the data-driven model,which can effectively improve the oscillation of prediction results of the data-driven model during the long-term degradation.It is found that the hybrid model has good error distribution(RSEM=0.8144 V,R2=0.8258)and local performance dynamic characteristics which can be used to predict the process of long-term stack performance degradation.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金funded by the Key Research and Development Program of Shaanxi,China(No.2024GX-YBXM-503)the National Natural Science Foundation of China(No.51974254)。
文摘Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysis methods have limitations in dealing with these complex and interrelated factors,and it is difficult to fully reveal the actual contribution of each factor to the production.Machine learning-based methods explore the complex mapping relationships between large amounts of data to provide datadriven insights into the key factors driving production.In this study,a data-driven PCA-RF-VIM(Principal Component Analysis-Random Forest-Variable Importance Measures)approach of analyzing the importance of features is proposed to identify the key factors driving post-fracturing production.Four types of parameters,including log parameters,geological and reservoir physical parameters,hydraulic fracturing design parameters,and reservoir stimulation parameters,were inputted into the PCA-RF-VIM model.The model was trained using 6-fold cross-validation and grid search,and the relative importance ranking of each factor was finally obtained.In order to verify the validity of the PCA-RF-VIM model,a consolidation model that uses three other independent data-driven methods(Pearson correlation coefficient,RF feature significance analysis method,and XGboost feature significance analysis method)are applied to compare with the PCA-RF-VIM model.A comparison the two models shows that they contain almost the same parameters in the top ten,with only minor differences in one parameter.In combination with the reservoir characteristics,the reasonableness of the PCA-RF-VIM model is verified,and the importance ranking of the parameters by this method is more consistent with the reservoir characteristics of the study area.Ultimately,the ten parameters are selected as the controlling factors that have the potential to influence post-fracturing gas production,as the combined importance of these top ten parameters is 91.95%on driving natural gas production.Analyzing and obtaining these ten controlling factors provides engineers with a new insight into the reservoir selection for fracturing stimulation and fracturing parameter optimization to improve fracturing efficiency and productivity.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272257,12102292,12032006)the special fund for Science and Technology Innovation Teams of Shanxi Province(Nos.202204051002006).
文摘This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal bundled power system, accurate data-driven analysis is necessary to maintain real-time balance between electricity supply and demand. By summarizing the development and characteristics of wind–thermal bundled power system in China and different countries, current research in this field can be clearly defined in two aspects: short-term wind power prediction for wind farms and performance evaluation of automatic generation control (AGC) for thermal power generation units. For short-term wind power prediction, it is recommended to focus on historical data preprocessing and artificial intelligence methods. The technical characteristics of different data-driven wind power prediction methods have been compared in detail. For performance evaluation of AGC units, a comprehensive analysis was conducted on current evaluation methods, including the “permitted-band” and “regulation mileage” methods, as well as the issue of evaluation failure in traditional evaluation methods in practical engineering. Finally, the relative optimal dynamic performance of AGC units was discussed and the future trend of data-driven research in wind–thermal bundled power system was summarized.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
基金supported by the National Natural Science Foundation of China(T2222002,22032004)the Fundamental Research Funds for the Central Universities(Xiamen University:No.20720240053)State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory(2023XAKJ0103074).
文摘Text mining has emerged as a powerful strategy for extracting domain knowledge structure from large amounts of text data.To date,most text mining methods are restricted to specific literature information,resulting in incomplete knowledge graphs.Here,we report a method that combines citation analysis with topic modeling to describe the hidden development patterns in the history of science.Leveraging this method,we construct a knowledge graph in the field of Raman spectroscopy.The traditional Latent DirichletAllocation model is chosen as the baseline model for comparison to validate the performance of our model.Our method improves the topic coherence with a minimum growth rate of 100%compared to the traditional text mining method.It outperforms the traditional text mining method on the diversity,and its growth rate ranges from 0 to 126%.The results show the effectiveness of rule-based tokenizer we designed in solving the word tokenizer problem caused by entity naming rules in the field of chemistry.It is versatile in revealing the distribution of topics,establishing the similarity and inheritance relationships,and identifying the important moments in the history of Raman spectroscopy.Our work provides a comprehensive tool for the science of science research and promises to offer new insights into the historical survey and development forecast of a research field.
基金Supported by Shandong Provincial Taishan Scholar Program(Grant No.tsqn202312133)Shandong Provincial Natural Science Foundation(Grant Nos.ZR2022YQ61,ZR2023ZD32)+1 种基金Shandong Provincial Natural Science Foundation(Grant No.ZR2023ZD32)National Natural Science Foundation of China(Grant Nos.61772551 and 62111530052)。
文摘For control systems with unknown model parameters,this paper proposes a data-driven iterative learning method for fault estimation.First,input and output data from the system under fault-free conditions are collected.By applying orthogonal triangular decomposition and singular value decomposition,a data-driven realization of the system's kernel representation is derived,based on this representation,a residual generator is constructed.Then,the actuator fault signal is estimated online by analyzing the system's dynamic residual,and an iterative learning algorithm is introduced to continuously optimize the residual-based performance function,thereby enhancing estimation accuracy.The proposed method achieves actuator fault estimation without requiring knowledge of model parameters,eliminating the time-consuming system modeling process,and allowing operators to focus on system optimization and decision-making.Compared with existing fault estimation methods,the proposed method demonstrates superior transient performance,steady-state performance,and real-time capability,reduces the need for manual intervention and lowers operational complexity.Finally,experimental results on a mobile robot verify the effectiveness and advantages of the method.
基金supported by the National Natural Science Foundation of China(Grant No.12271341).
文摘The element-free Galerkin(EFG)method,which constructs shape functions via moving least squares(MLS)approximation,represents a fundamental and widely studied meshless method in numerical computation.Although it achieves high computational accuracy,the shape functions are more complex than those in the conventional finite element method(FEM),resulting in great computational requirements.Therefore,improving the computational efficiency of the EFG method represents an important research direction.This paper systematically reviews significant contributions fromdomestic and international scholars in advancing the EFGmethod.Including the improved element-free Galerkin(IEFG)method,various interpolating EFG methods,four distinct complex variable EFG methods,and a series of dimension splitting meshless methods.In the numerical examples,the effectiveness and efficiency of the three methods are validated by analyzing the solutions of the IEFG method for 3D steadystate anisotropic heat conduction,3D elastoplasticity,and large deformation problems,as well as the performance of two-dimensional splitting meshless methods in solving the 3D Helmholtz equation.
基金supported by the Malaysia Ministry of Higher Education under Fundamental Research Grant Scheme with Project Code:FRGS/1/2024/TK07/USM/02/3.
文摘This paper reviews recent advancements in system identification methods for perturbed motorized systems,focusing on brushed DC motors,brushless DC motors,and permanent magnet synchronous motors.It examines data acquisition setups and evaluates conventional and metaheuristic optimization algorithms,highlighting their advantages,limitations,and applications.The paper explores emerging trends in model structures and parameter optimization techniques that address specific perturbations such as varying loads,noise,and friction.A comparative performance analysis is also included to assess several widely used optimization methods,including least squares(LS),particle swarm optimization(PSO),grey wolf optimizer(GWO),bat algorithm(BA),genetic algorithm(GA)and neural network for system identification of a specific case of a perturbed DC motor in both open-loop(OL)and closed-loop(CL)settings.Results show that GWO achieves the lowest error overall,excelling in OL scenarios,while PSO performs best in CL due to its synergy with feedback control.LS proves efficient in CL settings,whereas GA and BA rely heavily on feedback for improved performance.The paper also outlines potential research directions aimed at advancing motor modeling techniques,including integration of advanced machine learning methods,hybrid learning-based methods,and adaptive modeling techniques.These insights offer a foundation for advancing motor modeling techniques in real-world applications.