期刊文献+
共找到246,479篇文章
< 1 2 250 >
每页显示 20 50 100
Interpretable Data-Driven Learning With Fast Ultrasonic Detection for Battery Health Estimation
1
作者 Kailong Liu Yuhang Liu +2 位作者 Qiao Peng Naxin Cui Chenghui Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期267-269,共3页
Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) ... Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) batteries. However, the time-consuming signal data acquisition and the lack of interpretability of model still hinder its efficient deployment. Motivated by this, this letter proposes a novel and interpretable data-driven learning strategy through combining the benefits of explainable AI and non-destructive ultrasonic detection for battery SoH estimation. Specifically, after equipping battery with advanced ultrasonic sensor to promise fast real-time ultrasonic signal measurement, an interpretable data-driven learning strategy named generalized additive neural decision ensemble(GANDE) is designed to rapidly estimate battery SoH and explain the effects of the involved ultrasonic features of interest. 展开更多
关键词 ultrasonic detection interpretable data driven learning signal data acquisition battery health estimation lithium ion batteries generalized additive neural decision ensemble state health
在线阅读 下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems 被引量:1
2
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
在线阅读 下载PDF
On the Effectiveness of Data-Driven Learning(DDL) of English Articles
3
作者 赵娟 《海外英语》 2013年第18期6-7,共2页
The effectiveness of data-driven learning(DDL) has been testified on Chinese learners by using sample corpora of English articles. The result shows that an independent manipulation of the corpora on the part of learne... The effectiveness of data-driven learning(DDL) has been testified on Chinese learners by using sample corpora of English articles. The result shows that an independent manipulation of the corpora on the part of learner can not ensure the suc cess of DDL. 展开更多
关键词 DDL GRAMMAR learning learner-centeredness CORPUS E
在线阅读 下载PDF
A Case for Reevaluating Teacher's Role in Data-Driven Learning (DDL) of English Articles
4
作者 赵娟 《海外英语》 2013年第19期31-32,共2页
A case study has been made to explore whether the teacher’s role in data-driven learning(DDL)can be minimized.The outcome shows that the teacher’s role in offering an explicit instruction may be indispensable and ev... A case study has been made to explore whether the teacher’s role in data-driven learning(DDL)can be minimized.The outcome shows that the teacher’s role in offering an explicit instruction may be indispensable and even central to the acquisi tion of English articles. 展开更多
关键词 DDL GRAMMAR learning teacher’s role learner-center
在线阅读 下载PDF
NJmat 2.0:User Instructions of Data-Driven Machine Learning Interface for Materials Science
5
作者 Lei Zhang Hangyuan Deng 《Computers, Materials & Continua》 2025年第4期1-11,共11页
NJmat is a user-friendly,data-driven machine learning interface designed for materials design and analysis.The platform integrates advanced computational techniques,including natural language processing(NLP),large lan... NJmat is a user-friendly,data-driven machine learning interface designed for materials design and analysis.The platform integrates advanced computational techniques,including natural language processing(NLP),large language models(LLM),machine learning potentials(MLP),and graph neural networks(GNN),to facili-tate materials discovery.The platform has been applied in diverse materials research areas,including perovskite surface design,catalyst discovery,battery materials screening,structural alloy design,and molecular informatics.By automating feature selection,predictive modeling,and result interpretation,NJmat accelerates the development of high-performance materials across energy storage,conversion,and structural applications.Additionally,NJmat serves as an educational tool,allowing students and researchers to apply machine learning techniques in materials science with minimal coding expertise.Through automated feature extraction,genetic algorithms,and interpretable machine learning models,NJmat simplifies the workflow for materials informatics,bridging the gap between AI and experimental materials research.The latest version(available at https://figshare.com/articles/software/NJmatML/24607893(accessed on 01 January 2025))enhances its functionality by incorporating NJmatNLP,a module leveraging language models like MatBERT and those based on Word2Vec to support materials prediction tasks.By utilizing clustering and cosine similarity analysis with UMAP visualization,NJmat enables intuitive exploration of materials datasets.While NJmat primarily focuses on structure-property relationships and the discovery of novel chemistries,it can also assist in optimizing processing conditions when relevant parameters are included in the training data.By providing an accessible,integrated environment for machine learning-driven materials discovery,NJmat aligns with the objectives of the Materials Genome Initiative and promotes broader adoption of AI techniques in materials science. 展开更多
关键词 data-driven machine learning natural language processing machine learning potential large language model
在线阅读 下载PDF
Deep learning aided underwater acoustic OFDM receivers: Model-driven or data-driven?
6
作者 Hao Zhao Miaowen Wen +3 位作者 Fei Ji Yaokun Liang Hua Yu Cui Yang 《Digital Communications and Networks》 2025年第3期866-877,共12页
The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communica... The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communications using a finite number of pilots.On the other hand,Deep Learning(DL)approaches have been very successful in wireless OFDM communications.However,whether they will work underwater is still a mystery.For the first time,this paper compares two categories of DL-based UWA OFDM receivers:the DataDriven(DD)method,which performs as an end-to-end black box,and the Model-Driven(MD)method,also known as the model-based data-driven method,which combines DL and expert OFDM receiver knowledge.The encoder-decoder framework and Convolutional Neural Network(CNN)structure are employed to establish the DD receiver.On the other hand,an unfolding-based Minimum Mean Square Error(MMSE)structure is adopted for the MD receiver.We analyze the characteristics of different receivers by Monte Carlo simulations under diverse communications conditions and propose a strategy for selecting a proper receiver under different communication scenarios.Field trials in the pool and sea are also conducted to verify the feasibility and advantages of the DL receivers.It is observed that DL receivers perform better than conventional receivers in terms of bit error rate. 展开更多
关键词 Deep learning Doubly-selective channels data-driven Model-driven Underwater acoustic communication OFDM
在线阅读 下载PDF
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
7
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 Integrated learning algorithm Data intervals clustering Feature selection Application of artificial intelligence in distillation industry data-driven modelling
在线阅读 下载PDF
Soft computing applications in asphalt pavement:A comprehensive review of data-driven techniques using response surface methodology and machine learning
8
作者 Nura Shehu Aliyu Yaro Muslich Hartadi Sutanto +6 位作者 Mohd Rosli Hainin Noor Zainab Habib Aliyu Usman Muhammad Sani Bello Surajo Abubakar Wada Abiola Usman Adebanjo Ahmad Hussaini Jagaba 《Journal of Road Engineering》 2025年第2期129-163,共35页
The asphalt pavement industry is transforming because of the growing influence of artificial intelligence and industrial digitization.As a result of this shift,there is a stronger emphasis on advanced statistical appr... The asphalt pavement industry is transforming because of the growing influence of artificial intelligence and industrial digitization.As a result of this shift,there is a stronger emphasis on advanced statistical approaches like optimization tools like response surface methodology(RSM)and machine learning(ML)techniques.The goal of this paper is to provide a scientometric and systematic review of the application of RSM and ML applications in data-driven approaches such as optimizing,modeling,and predicting asphalt pavement performance to achieve sustainable asphalt pavements in support of numerous sustainable development goals(SDGs).These include Goals 9(sustainable infrastructure),11(urban resilience),12(sustainable construction strategies),13(climate action through optimized materials),and 17(multidisciplinary interaction).A thorough search of the ScienceDirect,Web of Science,and Scopus databases from 2010 to 2023 yielded 1249 relevant records,with 125 studies closely examined.Over the last thirteen years,there has been significant research growth in RSM and ML applications,particularly in ML-based pavement optimization.The study shows that the topic has a global presence,with notable contributions from Asia,North America,Europe,and other continents.Researchers have concentrated on utilizing sophisticated ML models such as support vector machines(SVM),artificial neural networks(ANN),and Bayesian networks for prediction.Also,the integration of RSM and ML provides a faster and more efficient method for analyzing large datasets to optimize asphalt pavement performance variables.Key contributors include the United States,China,and Malaysia,with global efforts focused on sustainable materials and approaches to reduce impact on the environment.Furthermore,the review demonstrates the integrated use of RSM and ML as transformative tools for improving sustainability,which contributes significantly to SDGs 9,11,12,13,and 17.Providing valuable insights for future research and guiding decision-making for soft computing applications for asphalt pavement projects. 展开更多
关键词 Response surface methodology Machine learning Asphalt pavement Optimization soft computing PREDICTION
在线阅读 下载PDF
A data-driven approach to predict fracture intensity using machine learning for presalt carbonate reservoirs:A feasibility study in the Mero Field,Santos Basin,Brazil
9
作者 Eberton Rodrigues de Oliveira Neto Fábio Júnior Damasceno Fernandes +4 位作者 Tuany Younis Abdul Fatah Raquel Macedo Dias Zoraida Roxana Tejada da Piedade Antonio Fernando Menezes Freire Wagner Moreira Lupinacci 《Energy Geoscience》 2025年第2期352-371,共20页
Predicting fracture intensity is essential for optimising reservoir production and mitigating drilling risks in the Brazilian pre-salt layer.However,previous studies rely excessively on conceptual models and typically... Predicting fracture intensity is essential for optimising reservoir production and mitigating drilling risks in the Brazilian pre-salt layer.However,previous studies rely excessively on conceptual models and typically do not integrate multiple types of data to perform such task.Moreover,to date,no feasibilitylike studies have assessed the reasonableness of such approaches.We propose a data-driven approach that utilises upscaled well logs(Young's modulus,Poisson's ratio,and silica content)alongside seismic attributes(curvature,distance to fault)to predict fracture intensity.The distance to fault is measured using the fault probability volume estimated by a pre-trained convolutional neural network(CNN).We evaluate the effectiveness of this data-driven approach employing two tree-ensemble models,eXtreme Gradient Boosting(XGBoost)and Random Forest,to estimate the volumetric fracture intensity(P32)in the wells.Regression and residual analyses indicate that XGBoost outperforms Random Forest.Results from feature importance methods,such as permutation importance and Shapley Additive explanations(SHAP),highlight curvature as the most important feature,followed by distance to fault,Young's modulus(or P-Impedance),silica content,and Poisson's ratio.The approach has been validated with rock sampling information and two blind tests.Consequently,we believe this workflow can be applied to other wells in nearby fields.The study offers a valuable tool for quantitatively estimating fracture intensity in pre-salt reservoirs.Future research may use this study as a reference for estimating fracture intensity within a seismic volume.The predicted fracture intensity estimates can enhance the reliability of reservoir porosity models and serve as a geohazard indicator to mitigate drilling risks. 展开更多
关键词 K1 curvature Naturally fractured reservoirs P32 Machine learning Feature importance
在线阅读 下载PDF
Predicting Academic Performance Levels in Higher Education:A Data-Driven Enhanced Fruit Fly Optimizer Kernel Extreme Learning Machine Model
10
作者 Zhengfei Ye Yongli Yang +1 位作者 Yi Chen Huiling Chen 《Journal of Bionic Engineering》 2025年第4期1940-1962,共23页
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T... Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process. 展开更多
关键词 Academic achievement Machine learning Teacher-student relationships Swarm intelligence algorithms Fruit fly optimization algorithm
在线阅读 下载PDF
A Hybrid Framework Combining Rule-Based and Deep Learning Approaches for Data-Driven Verdict Recommendations
11
作者 Muhammad Hameed Siddiqi Menwa Alshammeri +6 位作者 Jawad Khan Muhammad Faheem Khan Asfandyar Khan Madallah Alruwaili Yousef Alhwaiti Saad Alanazi Irshad Ahmad 《Computers, Materials & Continua》 2025年第6期5345-5371,共27页
As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework... As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems. 展开更多
关键词 Verdict recommendation legal knowledge base judicial text case laws semantic similarity legal domain features RULE-BASED deep learning
在线阅读 下载PDF
Data-driven framework based on machine learning and optimization algorithms to predict oxide-zeolite-based composite and reaction conditions for syngas-to-olefin conversion
12
作者 Mansurbek Urol ugli Abdullaev Woosong Jeon +5 位作者 Yun Kang Juhwan Noh Jung Ho Shin Hee-Joon Chun Hyun Woo Kim Yong Tae Kim 《Chinese Journal of Catalysis》 2025年第7期211-227,共17页
Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resour... Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resource-intensive.To address this challenge,we implemented a three-stage framework integrating machine learning,Bayesian optimization,and experimental validation,utilizing a carefully curated dataset from the literature.Our ensemble-tree model(R^(2)>0.87)identified Zn-Zr and Cu-Mg binary mixed oxides as the most effective OXZEO systems,with their light olefin space-time yields confirmed by physically mixing with HSAPO-34 through experimental validation.Density functional theory calculations further elucidated the activity trends between Zn-Zr and Cu-Mg mixed oxides.Among 16 catalyst and reaction condition descriptors,the oxide/zeolite ratio,reaction temperature,and pressure emerged as the most significant factors.This interpretable,data-driven framework offers a versatile approach that can be applied to other catalytic processes,providing a powerful tool for experiment design and optimization in catalysis. 展开更多
关键词 Syngas-to-olefin Oxide-zeolite-based composite Machine learning Bayesian optimization Catalyst and reaction engineering discovery Reaction condition optimization Density functional theory
在线阅读 下载PDF
Data-driven offline reinforcement learning approach for quadrotor's motion and path planning
13
作者 Haoran ZHAO Hang FU +2 位作者 Fan YANG Che QU Yaoming ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期386-397,共12页
Non-learning based motion and path planning of an Unmanned Aerial Vehicle(UAV)is faced with low computation efficiency,mapping memory occupation and local optimization problems.This article investigates the challenge ... Non-learning based motion and path planning of an Unmanned Aerial Vehicle(UAV)is faced with low computation efficiency,mapping memory occupation and local optimization problems.This article investigates the challenge of quadrotor control using offline reinforcement learning.By establishing a data-driven learning paradigm that operates without real-environment interaction,the proposed workflow offers a safer approach than traditional reinforcement learning,making it particularly suited for UAV control in industrial scenarios.The introduced algorithm evaluates dataset uncertainty and employs a pessimistic estimation to foster offline deep reinforcement learning.Experiments highlight the algorithm's superiority over traditional online reinforcement learning methods,especially when learning from offline datasets.Furthermore,the article emphasizes the importance of a more general behavior policy.In evaluations,the trained policy demonstrated versatility by adeptly navigating diverse obstacles,underscoring its real-world applicability. 展开更多
关键词 Motion planning Unmanned aerial vehicle Reinforcement learning data-driven learning Markov decision process
原文传递
玻尔兹曼优化Q-learning的高速铁路越区切换控制算法 被引量:3
14
作者 陈永 康婕 《控制理论与应用》 北大核心 2025年第4期688-694,共7页
针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误... 针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误码率等构建Q-learning算法回报函数;然后,提出玻尔兹曼搜索策略优化动作选择,以提高切换算法收敛性能;最后,综合考虑基站同频干扰的影响进行Q表更新,得到切换判决参数,从而控制切换执行.仿真结果表明:改进算法在不同运行速度和不同运行场景下,较传统算法能有效提高切换成功率,且满足无线通信服务质量QoS的要求. 展开更多
关键词 越区切换 5G-R Q-learning算法 玻尔兹曼优化策略
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
15
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
16
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 Federated learning Internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
基于MDP和Q-learning的绿色移动边缘计算任务卸载策略
17
作者 赵宏伟 吕盛凱 +2 位作者 庞芷茜 马子涵 李雨 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期9-16,共8页
目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process... 目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process,MDP)和Q-learning的绿色边缘计算任务卸载策略,该策略考虑了计算频率、传输功率、碳排放等约束,基于云边端协同计算模型,将碳排放优化问题转化为混合整数线性规划模型,通过MDP和Q-learning求解模型,并对比随机分配算法、Q-learning算法、SARSA(state action reward state action)算法的收敛性能、碳排放与总时延。结果与已有的计算卸载策略相比,新策略对应的任务调度算法收敛比SARSA算法、Q-learning算法分别提高了5%,2%,收敛性更好;系统碳排放成本比Q-learning算法、SARSA算法分别减少了8%,22%;考虑终端数量多少,新策略比Q-learning算法、SARSA算法终端数量分别减少了6%,7%;系统总计算时延上,新策略明显低于其他算法,比随机分配算法、Q-learning算法、SARSA算法分别减少了27%,14%,22%。结论该策略能够合理优化卸载计算任务和资源分配,权衡时延、能耗,减少系统碳排放量。 展开更多
关键词 碳排放 边缘计算 强化学习 马尔可夫决策过程 任务卸载
在线阅读 下载PDF
SensFL:Privacy-Preserving Vertical Federated Learning with Sensitive Regularization 被引量:1
18
作者 Chongzhen Zhang Zhichen Liu +4 位作者 Xiangrui Xu Fuqiang Hu Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期385-404,共20页
In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach... In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach to facilitate such collaboration,allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data.However,existing works have highlighted VFL’s susceptibility to privacy inference attacks,where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client.This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems.In this paper,we introduce SensFL,a novel privacy-enhancing method to against privacy inference attacks in VFL.Specifically,SensFL integrates regularization of the sensitivity of embeddings to the original data into the model training process,effectively limiting the information contained in shared embeddings.By reducing the sensitivity of embeddings to the original data,SensFL can effectively resist reverse privacy attacks and prevent the reconstruction of the original data from the embeddings.Extensive experiments were conducted on four distinct datasets and three different models to demonstrate the efficacy of SensFL.Experiment results show that SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning task.These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based intelligent railway systems,addressing critical security concerns in collaborative learning environments. 展开更多
关键词 Vertical federated learning PRIVACY DEFENSES
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:1
19
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation data-driven Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
A Comprehensive Survey on Federated Learning Applications in Computational Mental Healthcare 被引量:1
20
作者 Vajratiya Vajrobol Geetika Jain Saxena +6 位作者 Amit Pundir Sanjeev Singh Akshat Gaurav Savi Bansal Razaz Waheeb Attar Mosiur Rahman Brij B.Gupta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期49-90,共42页
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num... Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact. 展开更多
关键词 DEPRESSION emotional recognition intelligent healthcare systems mental health federated learning stress detection sleep behaviour
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部