期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ilc) model predictive control(MPC) fault observer
在线阅读 下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
2
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
在线阅读 下载PDF
Stability of Iterative Learning Control with Data Dropouts via Asynchronous Dynamical System 被引量:15
3
作者 Xu-Hui Bu Zhong-Sheng Hou 《International Journal of Automation and computing》 EI 2011年第1期29-36,共8页
In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchr... In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations. 展开更多
关键词 iterative learning control ilc networked control systems (NCSs) data dropouts asynchronous dynamical system robustness.
在线阅读 下载PDF
Iterative Learning Control With Incomplete Information:A Survey 被引量:15
4
作者 Dong Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期885-901,共17页
This paper conducts a survey on iterative learn-ing control(ILC)with incomplete information and associated control system design,which is a frontier of the ILC field.The incomplete information,including passive and ac... This paper conducts a survey on iterative learn-ing control(ILC)with incomplete information and associated control system design,which is a frontier of the ILC field.The incomplete information,including passive and active types,can cause data loss or fragment due to various factors.Passive incomplete information refers to incomplete data and information caused by practical system limitations during data collection,storage,transmission,and processing,such as data dropouts,delays,disordering,and limited transmission bandwidth.Active incomplete information refers to incomplete data and information caused by man-made reduction of data quantity and quality on the premise that the given objective is satisfied,such as sampling and quantization.This survey emphasizes two aspects:the first one is how to guarantee good learning performance and tracking performance with passive incomplete data,and the second is how to balance the control performance index and data demand by active means.The promising research directions along this topic are also addressed,where data robustness is highly emphasized.This survey is expected to improve understanding of the restrictive relationship and trade-off between incomplete data and tracking performance,quantitatively,and promote further developments of ILC theory. 展开更多
关键词 Data dropout data robustness incomplete information iterative learning control(ilc) quantized control sampled control varying lengths
在线阅读 下载PDF
Robust iterative learning control for nonlinear systems with measurement disturbances 被引量:6
5
作者 Xuhui BuI FashanYu +1 位作者 Zhongsheng Hou Haizhu Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期906-913,共8页
The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achi... The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achievable performance is greatly degraded when iteration-dependent, stochastic disturbances are pre-sented. This paper considers the robustness of the ILC algorithm for the nonlinear system in presence of stochastic measurement disturbances. The robust convergence of the P-type ILC algorithm is firstly addressed, and then an improved ILC algorithm with a decreasing gain is proposed. Theoretical analyses show that the proposed algorithm can guarantee that the tracking error of the nonlinear system tends to zero in presence of measurement dis-turbances. The analysis is also supported by a numerical example. 展开更多
关键词 iterative learning control ilc nonlinear system mea-surement disturbance iteration-varying disturbance.
在线阅读 下载PDF
Error analysis for remote nonlinear iterative learning control system with wireless channel noise 被引量:4
6
作者 方勇 颜华超 《Journal of Shanghai University(English Edition)》 CAS 2011年第1期7-11,共5页
In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-IL... In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-ILC) system is analyzed and an error boundary of the stable output of the R-ILC system is obtained for the boundary stochastic noise channel. Finally, we obtain some rules to reduce the fluctuation caused by wireless channel noise through the analysis results for fluctuation boundary. The simulation results prove the proposed rule is correct. 展开更多
关键词 remote control system iterative learning control ilc stable convergence fluctuation boundary control performance
在线阅读 下载PDF
Adaptive Iterative Learning Control for Nonlinear Time-delay Systems with Periodic Disturbances Using FSE-neural Network 被引量:4
7
作者 Chun-Li Zhang Jun-Min Li 《International Journal of Automation and computing》 EI 2011年第4期403-410,共8页
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad... An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme. 展开更多
关键词 Adaptive control iterative learning control ilc time-delay systems Fourier series expansion-neural network periodic disturbances.
在线阅读 下载PDF
Observer-based Iterative and Repetitive Learning Control for a Class of Nonlinear Systems 被引量:5
8
作者 Sheng Zhu Xuejie Wang Hong Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期990-998,共9页
In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertaintie... In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods. 展开更多
关键词 iterative learning control ilc observers repetitive learning control (RLC) time-varying parametrization.
在线阅读 下载PDF
Robust Optimization-Based Iterative Learning Control for Nonlinear Systems With Nonrepetitive Uncertainties 被引量:5
9
作者 Deyuan Meng Jingyao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期1001-1014,共14页
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a... This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results. 展开更多
关键词 Adaptive iterative learning control(ilc) nonlinear time-varying system robust convergence substochastic matrix
在线阅读 下载PDF
Iterative Learning Control for Distributed Parameter Systems Based on Non-Collocated Sensors and Actuators 被引量:4
10
作者 Jianxiang Zhang Baotong Cui +1 位作者 Xisheng Dai Zhengxian Jiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期865-871,共7页
In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using n... In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes. 展开更多
关键词 Actuators distributed PARAMETER system iterative learning control PD-type ilc scheme sensors
在线阅读 下载PDF
Iterative Learning Control for a Class of Linear Discrete-time Switched Systems 被引量:8
11
作者 BU Xu-Hui YU Fa-Shan +1 位作者 HOU Zhong-Sheng WANG Fu-Zhong 《自动化学报》 EI CSCD 北大核心 2013年第9期1564-1569,共6页
在这份报纸,反复的学习控制(ILC ) 与任意的切换的信号为线性分离时间的交换系统的一个类被考虑。交换系统重复地在有限时间间隔期间被操作,这被假定,然后第一个顺序 P 类型 ILC 计划能被用来完成完美的追踪在上自始至终间隔。由超... 在这份报纸,反复的学习控制(ILC ) 与任意的切换的信号为线性分离时间的交换系统的一个类被考虑。交换系统重复地在有限时间间隔期间被操作,这被假定,然后第一个顺序 P 类型 ILC 计划能被用来完成完美的追踪在上自始至终间隔。由超级向量途径,为在重复领域的如此的 ILC 系统的一个集中条件能被给。理论分析被模拟支持。 展开更多
关键词 迭代学习控制 切换系统 离散时间 线性 时间间隔 向量方法 收敛条件 C系统
在线阅读 下载PDF
Iterative Learning Control for Discrete-time Stochastic Systems with Quantized Information 被引量:10
12
作者 Dong Shen Yun Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期59-67,共9页
An iterative learning control (ILC) algorithm using quantized error information is given in this paper for both linear and nonlinear discrete-time systems with stochastic noises. A logarithmic quantizer is used to gua... An iterative learning control (ILC) algorithm using quantized error information is given in this paper for both linear and nonlinear discrete-time systems with stochastic noises. A logarithmic quantizer is used to guarantee an adaptive improvement in tracking performance. A decreasing learning gain is introduced into the algorithm to suppress the effects of stochastic noises and quantization errors. The input sequence is proved to converge strictly to the optimal input under the given index. Illustrative simulations are given to verify the theoretical analysis. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGORITHMS Digital control systems Discrete time control systems iterative methods learning algorithms Stochastic control systems Stochastic systems
在线阅读 下载PDF
Stochastic Iterative Learning Control With Faded Signals 被引量:2
13
作者 Ganggui Qu Dong Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第5期1196-1208,共13页
Stochastic iterative learning control(ILC)is designed for solving the tracking problem of stochastic linear systems through fading channels.Consequently,the signals used in learning control algorithms are faded in the... Stochastic iterative learning control(ILC)is designed for solving the tracking problem of stochastic linear systems through fading channels.Consequently,the signals used in learning control algorithms are faded in the sense that a random variable is multiplied by the original signal.To achieve the tracking objective,a two-dimensional Kalman filtering method is used in this study to derive a learning gain matrix varying along both time and iteration axes.The learning gain matrix minimizes the trace of input error covariance.The asymptotic convergence of the generated input sequence to the desired input value is strictly proved in the mean-square sense.Both output and input fading are accounted for separately in turn,followed by a general formulation that both input and output fading coexists.Illustrative examples are provided to verify the effectiveness of the proposed schemes. 展开更多
关键词 FADING channels iterative learning control (ilc) KALMAN filtering mean-square convergence STOCHASTIC systems
在线阅读 下载PDF
Stability Analysis of Continuous-time Iterative Learning Control Systems with Multiple State Delays 被引量:11
14
作者 MENG De-Yuan JIA Ying-Min +1 位作者 DU Jun-Ping YU Fa-Shan 《自动化学报》 EI CSCD 北大核心 2010年第5期696-703,共8页
关键词 连续系统 稳定性 自动化 TDS
在线阅读 下载PDF
Guaranteed Cost Iterative Learning Control for Multi-Phase Batch Processes
15
作者 WANG Limin WANG Runze +4 位作者 XIONG Yuting WANG Haosen ZHU Lin ZHANG Ke GAO Furong 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第6期811-819,共9页
Batch process is a typical multi-phase process. Due to the interaction between the phases of the batch process, high precision control in a single phase cannot guarantee high precision control of the whole batch proce... Batch process is a typical multi-phase process. Due to the interaction between the phases of the batch process, high precision control in a single phase cannot guarantee high precision control of the whole batch process. In order to solve this problem, the guaranteed cost iterative learning control(ILC) of multi-phase batch processes is studied in this paper. Firstly, through introducing the output error, the state error and the extended information, the multi-phase batch process is transformed into an equivalent 2D switched system which has different dimensions. In addition, under the measurable condition, the guaranteed cost iterative learning control law with extended information is designed. The proposed control law ensures not only the stability of the system but also the optimal control performance. Next, in order to study the stability of the system and the minimum running time under the condition of stable running, the multi-Lyapunov function method is used. By means of the average dwell time method, the sufficient conditions ensuring system to be exponentially stable are given in the form of linear matrix inequality(LMI). Finally, the injection molding process is taken as an example to make simulation, which shows the feasibility and effectiveness of the proposed method. 展开更多
关键词 MULTI-PHASE BATCH process iterative learning control (ilc) AVERAGE DWELL time hybrid guaranteed cost controller
原文传递
Set-point-related Indirect Iterative Learning Control for Multi-input Multi-output Systems
16
作者 Huo, Zhen-Yu Yang, Zhu Pang, Yan-Jun 《International Journal of Automation and computing》 EI 2012年第3期266-273,共8页
A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a su... A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results. 展开更多
关键词 iterative learning control (ilc) indirect ilc multi-input multi-output (MIMO) 2-dimensional system asymptotical stability linear matrix inequality (LMI).
原文传递
Kernel-based auto-associative P-type iterative learning control strategy
17
作者 LAN Tianyi LIN Hui LI Bingqiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期383-392,共10页
In order to accelerate the convergence speed of iterative learning control(ILC), taking the P-type learning algorithm as an example, a correction algorithm with kernel-based autoassociative is proposed for the linear ... In order to accelerate the convergence speed of iterative learning control(ILC), taking the P-type learning algorithm as an example, a correction algorithm with kernel-based autoassociative is proposed for the linear system. The learning mechanism of human brain associative memory is introduced to the traditional ILC. The control value of the subsequent time is precorrected with the current time information by association in each iterative learning process. The learning efficiency of the whole system is improved significantly with the proposed algorithm. Through the rigorous analysis, it shows that under this new designed ILC scheme, the uniform convergence of the state tracking error is guaranteed. Numerical simulations illustrate the effectiveness of the proposed associative control scheme and the validity of the conclusion. 展开更多
关键词 iterative learning control(ilc) ASSOCIATIVE learning CONVERGENCE speed tracking CONVERGENCE
在线阅读 下载PDF
Fundamental Trackability Problems for Iterative Learning Control
18
作者 Deyuan Meng Jingyao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期1933-1950,共18页
Generally,the classic iterative learning control(ILC)methods focus on finding design conditions for repetitive systems to achieve the perfect tracking of any specified trajectory,whereas they ignore a fundamental prob... Generally,the classic iterative learning control(ILC)methods focus on finding design conditions for repetitive systems to achieve the perfect tracking of any specified trajectory,whereas they ignore a fundamental problem of ILC:whether the specified trajectory is trackable,or equivalently,whether there exist some inputs for the repetitive systems under consideration to generate the specified trajectory?The current paper contributes to dealing with this problem.Not only is a concept of trackability introduced formally for any specified trajectory in ILC,but also some related trackability criteria are established.Further,the relation between the trackability and the perfect tracking tasks for ILC is bridged,based on which a new convergence analysis approach is developed for ILC by leveraging properties of a functional Cauchy sequence(FCS).Simulation examples are given to verify the effectiveness of the presented trackability criteria and FCS-induced convergence analysis method for ILC. 展开更多
关键词 CONVERGENCE functional Cauchy sequence(FCS) iterative learning control(ilc) trackability
在线阅读 下载PDF
A PD-Type State-Dependent Riccati Equation With Iterative Learning Augmentation for Mechanical Systems 被引量:3
19
作者 Saeed Rafee Nekoo JoséÁngel Acosta +1 位作者 Guillermo Heredia Anibal Ollero 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1499-1511,共13页
This work proposes a novel proportional-derivative(PD)-type state-dependent Riccati equation(SDRE)approach with iterative learning control(ILC)augmentation.On the one hand,the PD-type control gains could adopt many us... This work proposes a novel proportional-derivative(PD)-type state-dependent Riccati equation(SDRE)approach with iterative learning control(ILC)augmentation.On the one hand,the PD-type control gains could adopt many useful available criteria and tools of conventional PD controllers.On the other hand,the SDRE adds nonlinear and optimality characteristics to the controller,i.e.,increasing the stability margins.These advantages with the ILC correction part deliver a precise control law with the capability of error reduction by learning.The SDRE provides a symmetric-positive-definite distributed nonlinear suboptimal gain K(x)for the control input law u=–R–1(x)BT(x)K(x)x.The sub-blocks of the overall gain R–1(x)BT(x)K(x),are not necessarily symmetric positive definite.A new design is proposed to transform the optimal gain into two symmetric-positive-definite gains like PD-type controllers as u=–KSP(x)e–KSD(x)?.The new form allows us to analytically prove the stability of the proposed learning-based controller for mechanical systems;and presents guaranteed uniform boundedness in finite-time between learning loops.The symmetric PD-type controller is also developed for the state-dependent differential Riccati equation(SDDRE)to manipulate the final time.The SDDRE expresses a differential equation with a final boundary condition,which imposes a constraint on time that could be used for finitetime control.So,the availability of PD-type finite-time control is an asset for enhancing the conventional classical linear controllers with this tool.The learning rules benefit from the gradient descent method for both regulation and tracking cases.One of the advantages of this approach is a guaranteed-stability even from the first loop of learning.A mechanical manipulator,as an illustrative example,was simulated for both regulation and tracking problems.Successful experimental validation was done to show the capability of the system in practice by the implementation of the proposed method on a variable-pitch rotor benchmark. 展开更多
关键词 CLOSED-LOOP iterative learning control(ilc) PD-type SDRE SDDRE symmetric
在线阅读 下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems 被引量:1
20
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部