期刊文献+
共找到1,663篇文章
< 1 2 84 >
每页显示 20 50 100
Soil pore identification with the adaptive fuzzy C-means method based on computed tomography images 被引量:5
1
作者 Yue Zhao Qiaoling Han +1 位作者 Yandong Zhao Jinhao Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1043-1052,共10页
The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically an... The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically and accurately. Until recently, there have not been methods to identify soil pore structures. This has restricted the development of soil science, particularly regarding pore geometry and spatial distribution. Through the adoption of the fuzzy clustering theory and the establishment of pore identification rules, a novel pore identification method is described to extract pore structures from CT soil images. The robustness of the adaptive fuzzy C-means method (AFCM), the adaptive threshold method, and Image-Pro Plus tools were compared on soil specimens under different conditions, such as frozen, saturated, and dry situations. The results demonstrate that the AFCM method is suitable for identifying pore clusters, especially tiny pores, under various soil conditions. The method would provide an optional technique for the study of soil micromorphology. 展开更多
关键词 CT soil IMAGES fuzzy C-MEANS fuzzy clustering theory PORE identification rule
在线阅读 下载PDF
Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability 被引量:3
2
作者 Ruichao LI Yingqing GUO +1 位作者 Sing Kiong NGUANG Yifeng CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第6期1206-1214,共9页
This paper is concerned with identifying a Takagi-Sugeno(TS) fuzzy model for turbofan aero-engines working under the maximum power status(non-afterburning). To establish the fuzzy system, theoretical contributions... This paper is concerned with identifying a Takagi-Sugeno(TS) fuzzy model for turbofan aero-engines working under the maximum power status(non-afterburning). To establish the fuzzy system, theoretical contributions are made as follows. First, by fixing antecedent parameters, the estimation of consequent parameters in state-space representations is formulated as minimizing a quadratic cost function. Second, to avoid obtaining unstable identified models, a new theorem is proposed to transform the prior-knowledge of stability into constraints. Then based on the aforementioned work, the identification problem is synthesized as a constrained quadratic optimization.By solving the constrained optimization, a TS fuzzy system is identified with guaranteed stability.Finally, the proposed method is applied to the turbofan aero-engine using simulation data generated from an aerothermodynamics component-level model. Results show the identified fuzzy model achieves a high fitting accuracy while stabilities of the overall fuzzy system and all its local models are also guaranteed. 展开更多
关键词 Constrained optimization fuzzy system STABILITY System identification Turbofan engine
原文传递
Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine 被引量:11
3
作者 左红艳 罗周全 +1 位作者 管佳林 王益伟 《Journal of Central South University》 SCIE EI CAS 2014年第3期1085-1090,共6页
A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibratio... A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high. 展开更多
关键词 rock and soil fuzzy theory vibration excavation least squares-support vector machine identification
在线阅读 下载PDF
Developing a Novel Method for Road Hazardous Segment Identification Based on Fuzzy Reasoning and GIS 被引量:3
4
作者 Meysam Effati Mohammad Ali Rajabi +1 位作者 Farhad Samadzadegan J. A. Rod Blais 《Journal of Transportation Technologies》 2012年第1期32-40,共9页
Roads are one of the most important infrastructures in any country. One problem on road based transportation networks is accident. Current methods to identify of high potential segments of roads for accidents are base... Roads are one of the most important infrastructures in any country. One problem on road based transportation networks is accident. Current methods to identify of high potential segments of roads for accidents are based on statistical approaches that need statistical data of accident occurrences over an extended period of time so this cannot be applied to newly-built roads. In this research a new approach for road hazardous segment identification (RHSI) is introduced using Geospatial Information System (GIS) and fuzzy reasoning. In this research among all factors that usually play critical roles in the occurrence of traffic accidents, environmental factors and roadway design are considered. Using incomplete data the consideration of uncertainty is herein investigated using fuzzy reasoning. This method is performed in part of Iran's transit roads (Kohin-Loshan) for less expensive means of analyzing the risks and road safety in Iran. Comparing the results of this approach with existing statistical methods shows advantages when data are uncertain and incomplete, specially for recently built transportation roadways where statistical data are limited. Results show in some instances accident locations are somewhat displaced from the segments of highest risk and in few sites hazardous segments are not determined using traditional statistical methods. 展开更多
关键词 fuzzy Inference Systems (FIS) GEOSPATIAL Information System (GIS) ROAD Hazardous SEGMENT identification (RHSI)
暂未订购
Investigation and Application of Automatic Fingerprint Identification Based on Fuzzy Pattern Recognition 被引量:1
5
作者 杨阳 康景利 +1 位作者 郭银景 唐富华 《Journal of Beijing Institute of Technology》 EI CAS 2004年第S1期49-53,共5页
Fingerprint image is a typical non-restraint image that has some uncertainty, which makes it difficult to perform identification using classical approach. Therefore, fuzzy pattern recognition is applied to match indiv... Fingerprint image is a typical non-restraint image that has some uncertainty, which makes it difficult to perform identification using classical approach. Therefore, fuzzy pattern recognition is applied to match individual query by searching the entire template database. The fuzzy maximum subordinate principle is used to solve shift matching. Through experimenting and analyzing, the approximate principle fuzzy method is employed by selecting fuzzy characteristics and determining the similarity function to achieve the further accuracy. Theoretical and experimental results show this approach is effective and reasonable. 展开更多
关键词 fuzzy pattern recognition fingerprint identification maximum subordinate principle approximate principle
在线阅读 下载PDF
Metabonomic analysis of hepatitis B virus-induced liver failure:identification of potential diagnostic biomarkers by fuzzy support vector machine 被引量:11
6
作者 Yong MAO Xin HUANG +3 位作者 Ke YU Hai-bin QU Chang-xiao LIU Yi-yu CHENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第6期474-481,共8页
Hepatitis B virus (HBV)-induced liver failure is an emergent liver disease leading to high mortality. The severity of liver failure may be reflected by the profile of some metabolites. This study assessed the potent... Hepatitis B virus (HBV)-induced liver failure is an emergent liver disease leading to high mortality. The severity of liver failure may be reflected by the profile of some metabolites. This study assessed the potential of using metabolites as biomarkers for liver failure by identifying metabolites with good discriminative performance for its phenotype. The serum samples from 24 HBV-indueed liver failure patients and 23 healthy volunteers were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) to generate metabolite profiles. The 24 patients were further grouped into two classes according to the severity of liver failure. Twenty-five eommensal peaks in all metabolite profiles were extracted, and the relative area values of these peaks were used as features for each sample. Three algorithms, F-test, k-nearest neighbor (KNN) and fuzzy support vector machine (FSVM) combined with exhaustive search (ES), were employed to identify a subset of metabolites (biomarkers) that best predict liver failure. Based on the achieved experimental dataset, 93.62% predictive accuracy by 6 features was selected with FSVM-ES and three key metabolites, glyeerie acid, cis-aeonitie acid and citric acid, are identified as potential diagnostic biomarkers. 展开更多
关键词 Metabolite profile analysis Potential diagnostic biomarker identification k-nearest neighbor (KNN) fuzzy supportvector machine (FSVM) Exhaustive search (ES) Gas chromatography-mass spectrometry (GC-MS) Hepatitis B virus (HBV)-induced liver failure
暂未订购
Data-driven and physical-based identification of partial differential equations for multivariable system 被引量:1
7
作者 Wenbo Cao Weiwei Zhang 《Theoretical & Applied Mechanics Letters》 CSCD 2022年第2期127-131,共5页
Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot eff... Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems. 展开更多
关键词 Partial differential equation identification data-driven Multivariable system Dimensional analysis
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
8
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
An Improved SPSA Algorithm for System Identification Using Fuzzy Rules for Training Neural Networks 被引量:1
9
作者 Ahmad T.Abdulsadda Kamran Iqbal 《International Journal of Automation and computing》 EI 2011年第3期333-339,共7页
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri... Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error. 展开更多
关键词 Nonlinear system identification simultaneous perturbation stochastic approximation (SPSA) neural networks (NNs) fuzzy rules multi-layer perceptron (MLP).
在线阅读 下载PDF
An Efficient Fuzzy Logic Fault Detection and Identification Method of Photovoltaic Inverters 被引量:1
10
作者 Mokhtar Aly Hegazy Rezk 《Computers, Materials & Continua》 SCIE EI 2021年第5期2283-2299,共17页
Fuzzy logic control(FLC)systems have found wide utilization in several industrial applications.This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-ti... Fuzzy logic control(FLC)systems have found wide utilization in several industrial applications.This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-tied photovoltaic(PV)inverters.Large installations and ambitious plans have been recently achieved for PV systems as clean and renewable power generation sources due to their improved environmental impacts and availability everywhere.Power converters represent the main parts for the grid integration of PV systems.However,PV power converters contain several power switches that construct their circuits.The power switches in PV systems are highly subjected to high stresses due to the continuously varying operating conditions.Moreover,the grid-tied systems represent nonlinear systems and the system model parameters are changing continuously.Consequently,the grid-tied PV systems have a nonlinear factor and the fault detection and identification(FDI)methods based on using mathematical models become more complex.The proposed fuzzy logic-based FDI(FL-FDI)method is based on employing the fuzzy logic concept for detecting and identifying the location of various switch faults.The proposed FL-FDI method is designed and extracted from the analysis and comparison of the various measured voltage/current components for the control purposes.Therefore,the proposed FL-FDI method does not require additional components or measurement circuits.Additionally,the proposed method can detect the faulty condition and also identify the location of the faulty switch for replacement and maintenance purposes.The proposed method can detect the faulty condition within only a single fundamental line period without the need for additional sensors and/or performing complex calculations or precise models.The proposed FL-FDI method is tested on the widely used T-type PV inverter system,wherein there are twelve different switches and the FDI process represents a challenging task.The results shows the superior and accurate performance of the proposed FL-FDI method. 展开更多
关键词 Fault detection and identification fuzzy logic T-type inverter photovoltaic(PV)
在线阅读 下载PDF
Fuzzy Identification Based on Tire/Road Adhesion Feature 被引量:6
11
作者 WANG Feng FAN Xiao-bin +2 位作者 ZHANG Ye-ming JIN Ke YANG Fei 《Computer Aided Drafting,Design and Manufacturing》 2015年第1期62-67,共6页
For identifying the tire/road friction coefficient accurately in real-time to meet the needs of automobile electronic control system and then improving the active safety performance of automobile, the road recognition... For identifying the tire/road friction coefficient accurately in real-time to meet the needs of automobile electronic control system and then improving the active safety performance of automobile, the road recognition method based on fuzzy control algorithm was studied in this paper. Adopt a 7-DOF vehicle dynamic model, wheel slip ratio 2 and longitudinal forces Fx as the input of fuzzy controller with fuzzy rules was proposed. The output is the weight coefficient of p-2 functional expression which is related to cl, c2 and c3 proposed by Burckhardt etc. By a simulation experiment of automobile brake on the condition of driving straight or veering on a single road and docking pavement, to some extent, indicates that this method is able to guarantee the real-time and accuracy of the road identification. 展开更多
关键词 vehicle model kinetic parameters fuzzy road identification system simulation
在线阅读 下载PDF
A User-Transformer Relation Identification Method Based on QPSO and Kernel Fuzzy Clustering 被引量:1
12
作者 Yong Xiao Xin Jin +2 位作者 Jingfeng Yang Yanhua Shen Quansheng Guan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期1293-1313,共21页
User-transformer relations are significant to electric power marketing,power supply safety,and line loss calculations.To get accurate user-transformer relations,this paper proposes an identification method for user-tr... User-transformer relations are significant to electric power marketing,power supply safety,and line loss calculations.To get accurate user-transformer relations,this paper proposes an identification method for user-transformer relations based on improved quantum particle swarm optimization(QPSO)and Fuzzy C-Means Clustering.The main idea is:as energymeters at different transformer areas exhibit different zero-crossing shift features,we classify the zero-crossing shift data from energy meters through Fuzzy C-Means Clustering and compare it with that at the transformer end to identify user-transformer relations.The proposed method contributes in three main ways.First,based on the fuzzy C-means clustering algorithm(FCM),the quantum particle swarm optimization(PSO)is introduced to optimize the FCM clustering center and kernel parameters.The optimized FCM algorithm can improve clustering accuracy and efficiency.Since easily falls into a local optimum,an improved PSO optimization algorithm(IQPSO)is proposed.Secondly,considering that traditional FCM cannot solve the linear inseparability problem,this article uses a FCM(KFCM)that introduces kernel functions.Combinedwith the IQPSOoptimization algorithm used in the previous step,the IQPSO-KFCM algorithm is proposed.Simulation experiments verify the superiority of the proposed method.Finally,the proposed method is applied to transformer detection.The proposed method determines the class members of transformers and meters in the actual transformer area,and obtains results consistent with actual user-transformer relations.This fully shows that the proposed method has practical application value. 展开更多
关键词 User-transformer relation identification zero-crossing shift fuzzy C-means clustering quantum particle swarm optimization attractor multiple update strategy dynamic crossover strategy perturbation strategy of potential-well characteristic length
在线阅读 下载PDF
Structural Stress Identification Using Fuzzy Pattern Recognition and Information Fusion Technique 被引量:1
13
《Journal of Civil Engineering and Architecture》 2012年第4期479-488,共10页
In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in whic... In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing. 展开更多
关键词 Stress identification fuzzy pattern recognition information fusion technique
在线阅读 下载PDF
System Identification in the Network Era:A Survey of Data Issues and Innovative Approaches
14
作者 Qing-Guo Wang Liang Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第7期1305-1319,共15页
System identification is a data-driven modeling technique that originates from the control field.It constructs models from data to mimic the behavior of dynamic systems.However,in the network era,scenarios such as sen... System identification is a data-driven modeling technique that originates from the control field.It constructs models from data to mimic the behavior of dynamic systems.However,in the network era,scenarios such as sensor malfunctions,packet loss,cyber-attacks,and big data affect the quality,integrity,and security of the data.These data issues pose significant challenges to traditional system identification methods.This paper presents a comprehensive survey of the emergent challenges and advances in system identification in the network era.It explores cutting-edge methodologies to address data issues such as data loss,outliers,noise and nonlinear system identification for complex systems.To tackle the data loss,the methods based on imputation and likelihood-based inference(e.g.,expectation maximization)have been employed.For outliers and noise,methods like robust regression(e.g.,least median of squares,least trimmed squares)and lowrank matrix decomposition show progress in maintaining data integrity.Nonlinear system identification has advanced through kernel-based methods and neural networks,which can model complex data patterns.Finally,this paper provides valuable insights into potential directions for future research. 展开更多
关键词 data-driven modeling data issues NONLINEARITY system identification
在线阅读 下载PDF
AN IDENTIFICATION ALGORITHM OF FUZZY MODELS
15
作者 张化光 陈来九 徐治皋 《Journal of Southeast University(English Edition)》 EI CAS 1992年第2期54-63,共10页
An identification approach of dynamic system is put forward in this paperwhich can provide the fuzzy models with fairly high accuracy.This method consists ofpremise structure identification,premise parameters identifi... An identification approach of dynamic system is put forward in this paperwhich can provide the fuzzy models with fairly high accuracy.This method consists ofpremise structure identification,premise parameters identification,consequent structureand parameters identification.It has been applied to some industrial processes modeling.The simulation study shows its effectiveness. 展开更多
关键词 fuzzy model INDUSTRIAL PROCESS structure identification PARAMETER identification fuzzy RULE
在线阅读 下载PDF
Identification of Fuzzy System Via Fuzzy Competitive Learning Method
16
作者 王宏伟 王子才 马萍 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第2期60-63,共4页
The paper presents an approach to identfying a fhzzy model composed of fuzzy-logic rules for a multi-in-put/single outpu system. The ther of fuzzy rules and membership functions of input variables are obtained by mean... The paper presents an approach to identfying a fhzzy model composed of fuzzy-logic rules for a multi-in-put/single outpu system. The ther of fuzzy rules and membership functions of input variables are obtained by means of a fuzzy competitive lerning method with a validity criterion. This method avoids the complexity of system structure identilication and decreases the number of fuzzy rules. Recareive least square algorithm can be used to iden-tify the parameters of conclusion polynomials .The proposed method is used to identify the well-known Box-Jenkins da-ta set with the result shawn at the end of the paper to demonstrae its advanages. 展开更多
关键词 fuzzy identification fuzzy COMPETITIVE LEARNING RECURSIVE least SQUARE estimation system identification
在线阅读 下载PDF
Fuzzy Set Identification of Bone Marrow Cells
17
作者 Wang Reikang Nuttall Kern L. Fenn JoAnn P. Wittwer Carl T. (School of Medicine, University of Utah, USA) 《Advances in Manufacturing》 SCIE CAS 1999年第1期70-73,共4页
Using rubricytes and lymphocytes as examples,this paper presents a fuzzy set theory and method to identify human bone marrow hematopoiesis system cells (BMCs).On the basis of the Cauchy’s distribution function,this p... Using rubricytes and lymphocytes as examples,this paper presents a fuzzy set theory and method to identify human bone marrow hematopoiesis system cells (BMCs).On the basis of the Cauchy’s distribution function,this paper sets up a series of membership function formulae of the BMC feature fuzzy subsets,general identification formulae of fuzzy sets for the BMCs,as well as identification formulae of fuzzy sets for rubricytes and lymphocytes.These formulae will assist with the quantitation of unknown cells compared to standard cells. 展开更多
关键词 CELL feature CELL identification fuzzy SET
在线阅读 下载PDF
FUZZY IDENTIFICATION METHOD BASED ON A NEW OBJECTIVE FUNCTION
18
作者 王宏伟 贺汉根 黄柯棣 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期162-166,共5页
A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the sys... A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non linear systems and obviously improve modeling accuracy. 展开更多
关键词 objective function fuzzy clustering fuzzy identification non linear systems
在线阅读 下载PDF
Improved fuzzy identification method based on Hough transformation and fuzzy clustering
19
作者 刘福才 路平立 +1 位作者 潘江华 裴润 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期257-261,共5页
This paper presents an approach that is useful for the identification of a fuzzy model in SISO system. The initial values of cluster centers are identified by the Hough transformation, which considers the linearity an... This paper presents an approach that is useful for the identification of a fuzzy model in SISO system. The initial values of cluster centers are identified by the Hough transformation, which considers the linearity and continuity of given input-output data, respectively. For the premise parts parameters identification, we use fuzzy-C-means clustering method. The consequent parameters are identified based on recursive least square. This method not only makes approximation more accurate, but also let computation be simpler and the procedure is realized more easily. Finally, it is shown that this method is useful for the identification of a fuzzy model by simulation. 展开更多
关键词 fuzzy identification Hough transformation fuzzy clustering recursive least square.
在线阅读 下载PDF
Adaptive backward stepwise selection of fast sparse identification of nonlinear dynamics
20
作者 Feng JIANG Lin DU +2 位作者 Qing XUE Zichen DENG C.GREBOGI 《Applied Mathematics and Mechanics(English Edition)》 2025年第12期2361-2384,共24页
Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression pr... Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression process remain substantial challenges.This study proposes the adaptive backward stepwise selection of fast SINDy(ABSS-FSINDy),which integrates statistical learning-based estimation and technical advancements to significantly reduce simulation time.This approach not only provides insights into the conditions under which SINDy performs optimally but also highlights potential failure points,particularly in the context of backward stepwise selection(BSS).By decoding predefined features into textual expressions,ABSS-FSINDy significantly reduces the simulation time compared with conventional symbolic regression methods.We validate the proposed method through a series of numerical experiments involving both planar/spatial dynamics and high-dimensional chaotic systems,including Lotka-Volterra,hyperchaotic Rossler,coupled Lorenz,and Lorenz 96 benchmark systems.The experimental results demonstrate that ABSS-FSINDy autonomously determines optimal hyperparameters within the SINDy framework,overcoming the curse of dimensionality in high-dimensional simulations.This improvement is substantial across both lowand high-dimensional systems,yielding efficiency gains of one to three orders of magnitude.For instance,in a 20D dynamical system,the simulation time is reduced from 107.63 s to just 0.093 s,resulting in a 3-order-of-magnitude improvement in simulation efficiency.This advancement broadens the applicability of SINDy for the identification and reconstruction of high-dimensional dynamical systems. 展开更多
关键词 data-driven dynamics modeling backward stepwise selection(BSS) sparse identification of nonlinear dynamics(SINDy) sparse regression hyperparameter determination curse of dimensionality
在线阅读 下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部