To achieve the high availability of health data in erasure-coded cloud storage systems,the data update performance in erasure coding should be continuously optimized.However,the data update performance is often bottle...To achieve the high availability of health data in erasure-coded cloud storage systems,the data update performance in erasure coding should be continuously optimized.However,the data update performance is often bottlenecked by the constrained cross-rack bandwidth.Various techniques have been proposed in the literature to improve network bandwidth efficiency,including delta transmission,relay,and batch update.These techniques were largely proposed individually previously,and in this work,we seek to use them jointly.To mitigate the cross-rack update traffic,we propose DXR-DU which builds on four valuable techniques:(i)delta transmission,(ii)XOR-based data update,(iii)relay,and(iv)batch update.Meanwhile,we offer two selective update approaches:1)data-deltabased update,and 2)parity-delta-based update.The proposed DXR-DU is evaluated via trace-driven local testbed experiments.Comprehensive experiments show that DXR-DU can significantly improve data update throughput while mitigating the cross-rack update traffic.展开更多
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud...With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.展开更多
Due to the development of 5G communication,many aspects of information technology(IT)services are changing.With the development of communication technologies such as 5G,it has become possible to provide IT services th...Due to the development of 5G communication,many aspects of information technology(IT)services are changing.With the development of communication technologies such as 5G,it has become possible to provide IT services that were difficult to provide in the past.One of the services made possible through this change is cloud-based collaboration.In order to support secure collaboration over cloud,encryption technology to securely manage dynamic data is essential.However,since the existing encryption technology is not suitable for encryption of dynamic data,a new technology that can provide encryption for dynamic data is required for secure cloudbased collaboration.In this paper,we propose a new encryption technology to support secure collaboration for dynamic data in the cloud.Specifically,we propose an encryption operation mode which can support data updates such as modification,addition,and deletion of encrypted data in an encrypted state.To support the dynamic update of encrypted data,we invent a new mode of operation technique named linked-block cipher(LBC).Basic idea of our work is to use an updatable random value so-called link to link two encrypted blocks.Due to the use of updatable random link values,we can modify,insert,and delete an encrypted data without decrypt it.展开更多
Constrained Delaunay triangulated irregular network is one kind of dynamic data structures used in geosciences. The research on point and edges insertion in CD-TIN is the basis of its application. Comparing with the a...Constrained Delaunay triangulated irregular network is one kind of dynamic data structures used in geosciences. The research on point and edges insertion in CD-TIN is the basis of its application. Comparing with the algorithms of points and constrained edge insertion, there are very a few researches on constrained edge deletion in CD-TIN. Based on the analysis of the polymorphism of constrained edge, virtual points are used to describe the intersection of constrained edges. A new algorithm is presented, called as influence domain retriangulating for virtual point (IDRVP), to delete constrained edges with virtual points. The algorithm is complete in topology. Finally, the algorithm is tested by some applications cases.展开更多
The purpose of this paper is to study the construction of concept lattice from variable formal contexts.Composition and decomposition theories are proposed for the unraveling of concept lattice from contexts with vari...The purpose of this paper is to study the construction of concept lattice from variable formal contexts.Composition and decomposition theories are proposed for the unraveling of concept lattice from contexts with variable attribute set in the process of information updating.The relationship between the extension sets of the original context and that of its sub-context is analyzed.The composition and decomposition theories are then generalized to the situation involving more than two sub-contexts and the situation with variable attribute set and object set.展开更多
基金supported by Major Special Project of Sichuan Science and Technology Department(2020YFG0460)Central University Project of China(ZYGX2020ZB020,ZYGX2020ZB019).
文摘To achieve the high availability of health data in erasure-coded cloud storage systems,the data update performance in erasure coding should be continuously optimized.However,the data update performance is often bottlenecked by the constrained cross-rack bandwidth.Various techniques have been proposed in the literature to improve network bandwidth efficiency,including delta transmission,relay,and batch update.These techniques were largely proposed individually previously,and in this work,we seek to use them jointly.To mitigate the cross-rack update traffic,we propose DXR-DU which builds on four valuable techniques:(i)delta transmission,(ii)XOR-based data update,(iii)relay,and(iv)batch update.Meanwhile,we offer two selective update approaches:1)data-deltabased update,and 2)parity-delta-based update.The proposed DXR-DU is evaluated via trace-driven local testbed experiments.Comprehensive experiments show that DXR-DU can significantly improve data update throughput while mitigating the cross-rack update traffic.
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00399401,Development of Quantum-Safe Infrastructure Migration and Quantum Security Verification Technologies).
文摘With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.
基金This work was partly supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-00779Development of high-speed encryption data processing technology that guarantees privacy based hardware,50%)National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(NRF-2021R1F1A1056115,50%).
文摘Due to the development of 5G communication,many aspects of information technology(IT)services are changing.With the development of communication technologies such as 5G,it has become possible to provide IT services that were difficult to provide in the past.One of the services made possible through this change is cloud-based collaboration.In order to support secure collaboration over cloud,encryption technology to securely manage dynamic data is essential.However,since the existing encryption technology is not suitable for encryption of dynamic data,a new technology that can provide encryption for dynamic data is required for secure cloudbased collaboration.In this paper,we propose a new encryption technology to support secure collaboration for dynamic data in the cloud.Specifically,we propose an encryption operation mode which can support data updates such as modification,addition,and deletion of encrypted data in an encrypted state.To support the dynamic update of encrypted data,we invent a new mode of operation technique named linked-block cipher(LBC).Basic idea of our work is to use an updatable random value so-called link to link two encrypted blocks.Due to the use of updatable random link values,we can modify,insert,and delete an encrypted data without decrypt it.
文摘Constrained Delaunay triangulated irregular network is one kind of dynamic data structures used in geosciences. The research on point and edges insertion in CD-TIN is the basis of its application. Comparing with the algorithms of points and constrained edge insertion, there are very a few researches on constrained edge deletion in CD-TIN. Based on the analysis of the polymorphism of constrained edge, virtual points are used to describe the intersection of constrained edges. A new algorithm is presented, called as influence domain retriangulating for virtual point (IDRVP), to delete constrained edges with virtual points. The algorithm is complete in topology. Finally, the algorithm is tested by some applications cases.
基金supported by grants from the National Natural Science Foundation of China(No.60703117 and No.11071281)the Fundamental Research Funds for the Central Universities(No.JY 10000903010 and No.JY 10000903014).
文摘The purpose of this paper is to study the construction of concept lattice from variable formal contexts.Composition and decomposition theories are proposed for the unraveling of concept lattice from contexts with variable attribute set in the process of information updating.The relationship between the extension sets of the original context and that of its sub-context is analyzed.The composition and decomposition theories are then generalized to the situation involving more than two sub-contexts and the situation with variable attribute set and object set.