期刊文献+
共找到2,371篇文章
< 1 2 119 >
每页显示 20 50 100
Inverse Estimation on Trigger Factors of Simultaneous Slope Failures with Purification of Training Data Sets
1
作者 Hirohito Kojima Ryo Sekine +1 位作者 Tomoya Yoshida Ryo Nozaki 《Journal of Earth Science and Engineering》 2013年第9期594-602,共9页
This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures"... This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures". Due to difficulties in pixel-by-pixel observations of trigger factors, as one of the measures, the authors had proposed an inverse analysis algorithm on trigger factors based on SEM (structural equation modeling). Through a measurement equation, the trigger factor is inversely estimated, and a TFI (trigger factor influence) map can be also produced. As a subsequence subject, a purification procedure of training data set should be constructed to improve the accuracy of TFI map which depends on the representativeness of given training data sets of different types of slope failures. The proposed procedure resamples the matched pixels between original groups of past slope failures (i.e., surface slope failures, deep-seated slope failures, landslides) and classified three groups by K-means clustering for all pixels corresponding to those slope failures. For all cases of three types of slope failures, the improvement of success rates with respect to resampled training data sets was confirmed. As a final outcome, the differences between TFI maps produced by using original and resampled training data sets, respectively, are delineated on a DIF map (difference map) which is useful for analyzing trigger factor influence in terms of "risky- and safe-side assessment" sub-areas with respect to "different types of simultaneous slope failures". 展开更多
关键词 Purification of training data simultaneous slope failures inverse analysis of unobserved trigger factor spatial data integration structural equation modeling.
在线阅读 下载PDF
Optimization of an Artificial Intelligence Database and Camera Installation for Recognition of Risky Passenger Behavior in Railway Vehicles
2
作者 Min-kyeong Kim Yeong Geol Lee +3 位作者 Won-Hee Park Su-hwan Yun Tae-Soon Kwon Duckhee Lee 《Computers, Materials & Continua》 SCIE EI 2025年第1期1277-1293,共17页
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in... Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly. 展开更多
关键词 AI railway vehicle risk factor smart detection AI training data
在线阅读 下载PDF
ON THE PERFORMANCE OF DATA-DEPENDENT SUPERIMPOSED TRAINING WITHOUT CYCLIC PREFIX FOR SISO/MIMO SYSTEMS
3
作者 Yuan Weina Wang Ping Fan Pingzhi 《Journal of Electronics(China)》 2010年第1期37-42,共6页
Compared with channel estimation method based on explicit training sequences,bandwidth is saved for those methods using superimposed training sequences,while it is wasted when Cyclic Prefix(CP) is added.In previous wo... Compared with channel estimation method based on explicit training sequences,bandwidth is saved for those methods using superimposed training sequences,while it is wasted when Cyclic Prefix(CP) is added.In previous work of McLernon,the Mean Square Error(MSE) performance of Data-Dependent Superimposed Training(DDST) without CP for Single-Input Single-Output(SISO) system was analyzed under the assumption that the data-dependent sequence matrix was a circulant matrix and not interfered by others.In fact,for the system without CP,the data-dependent sequence matrix is not circulant any more and will be interfered.This paper derives the exact expression of MSE for the system without CP and also gives its extension to Multiple-Input Multiple-Output(MIMO) system without CP. 展开更多
关键词 data-Dependent Superimposed training(DDST) Cyclic Prefix(CP) Multiple-Input-Multiple-Output(MIMO)
在线阅读 下载PDF
Exploration and Research on the Training Mode of New Engineering Talents Under the Background of Big Data
4
作者 Bing Zhao Jie Yang +1 位作者 Dongxiang Ma Jie Zhu 《国际计算机前沿大会会议论文集》 2018年第2期48-48,共1页
关键词 BIG data NEW ENGINEERING Talents trainING
在线阅读 下载PDF
Efficient deep-learning-based surrogate model for reservoir production optimization using transfer learning and multi-fidelity data
5
作者 Jia-Wei Cui Wen-Yue Sun +2 位作者 Hoonyoung Jeong Jun-Rong Liu Wen-Xin Zhou 《Petroleum Science》 2025年第4期1736-1756,共21页
In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However... In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However,a significant challenge lies in the necessity of numerous high-fidelity training simulations to construct these deep-learning models,which limits their application to field-scale problems.To overcome this limitation,we introduce a training procedure that leverages transfer learning with multi-fidelity training data to construct surrogate models efficiently.The procedure begins with the pre-training of the surrogate model using a relatively larger amount of data that can be efficiently generated from upscaled coarse-scale models.Subsequently,the model parameters are finetuned with a much smaller set of high-fidelity simulation data.For the cases considered in this study,this method leads to about a 75%reduction in total computational cost,in comparison with the traditional training approach,without any sacrifice of prediction accuracy.In addition,a dedicated well-control embedding model is introduced to the traditional U-Net architecture to improve the surrogate model's prediction accuracy,which is shown to be particularly effective when dealing with large-scale reservoir models under time-varying well control parameters.Comprehensive results and analyses are presented for the prediction of well rates,pressure and saturation states of a 3D synthetic reservoir system.Finally,the proposed procedure is applied to a field-scale production optimization problem.The trained surrogate model is shown to provide excellent generalization capabilities during the optimization process,in which the final optimized net-present-value is much higher than those from the training data ranges. 展开更多
关键词 Subsurface flow simulation Surrogate model Transfer learning Multi-fidelity training data Production optimization
原文传递
Data-Centric AI
6
作者 鄂维南 汤林鹏 张文涛 《计算》 2025年第4期6-15,共10页
本文系统阐述了人工智能正从模型为中心(Model-centric AI,MCAI)向数据为中心(Data-centric AI,DCAI)转型的趋势,并提出了面向DCAI的数据基础设施体系,包括支持多模态数据统一管理的AI数据库;DataFlow数据准备与动态训练工具。该体系突... 本文系统阐述了人工智能正从模型为中心(Model-centric AI,MCAI)向数据为中心(Data-centric AI,DCAI)转型的趋势,并提出了面向DCAI的数据基础设施体系,包括支持多模态数据统一管理的AI数据库;DataFlow数据准备与动态训练工具。该体系突破了传统数据湖和数据处理工具的局限,实现了数据与模型的高效协同。通过大模型预训练、企业知识库构建等创新应用验证,展示了DCAI基础设施在提升模型性能、降低开发门槛方面的突破性价值,为人工智能向智能化计算新范式演进提供了系统解决方案。 展开更多
关键词 数据为中心的人工智能 数据基础设施 AI数据库 多模态数据管理 数据准备 动态训练 智能计算
在线阅读 下载PDF
一种基于Tri-training的数据流集成分类算法 被引量:5
7
作者 胡学钢 马利伟 李培培 《数据采集与处理》 CSCD 北大核心 2017年第5期853-860,共8页
数据流分类是数据挖掘领域的重要研究任务之一,已有的数据流分类算法大多是在有标记数据集上进行训练,而实际应用领域数据流中有标记的数据数量极少。为解决这一问题,可通过人工标注的方式获取标记数据,但人工标注昂贵且耗时。考虑到未... 数据流分类是数据挖掘领域的重要研究任务之一,已有的数据流分类算法大多是在有标记数据集上进行训练,而实际应用领域数据流中有标记的数据数量极少。为解决这一问题,可通过人工标注的方式获取标记数据,但人工标注昂贵且耗时。考虑到未标记数据的数量极大且隐含大量信息,因此在保证精度的前提下,为利用这些未标记数据的信息,本文提出了一种基于Tri-training的数据流集成分类算法。该算法采用滑动窗口机制将数据流分块,在前k块含有未标记数据和标记数据的数据集上使用Tri-training训练基分类器,通过迭代的加权投票方式不断更新分类器直到所有未标记数据都被打上标记,并利用k个Tri-training集成模型对第k+1块数据进行预测,丢弃分类错误率高的分类器并在当前数据块上重建新分类器从而更新当前模型。在10个UCI数据集上的实验结果表明:与经典算法相比,本文提出的算法在含80%未标记数据的数据流上的分类精度有显著提高。 展开更多
关键词 数据流分类 TRI-trainING 未标记数据 集成 加权投票
在线阅读 下载PDF
铁路列车群运行多智能体感知模型与仿真
8
作者 骆晖 《铁道运输与经济》 北大核心 2026年第1期141-150,共10页
为探讨铁路高精度与智能化运行仿真,研究铁路工程数据驱动建模与列车群多智能体自主感知仿真理论与方法。首先以工程勘察设计数据驱动生成线路等矢量数据模型,构建轨道区段、信号机、道岔、列车等智能体模型;其次研究单列车自主感知控... 为探讨铁路高精度与智能化运行仿真,研究铁路工程数据驱动建模与列车群多智能体自主感知仿真理论与方法。首先以工程勘察设计数据驱动生成线路等矢量数据模型,构建轨道区段、信号机、道岔、列车等智能体模型;其次研究单列车自主感知控制模型的构建与运行;最后通过构建CTC智能体实现数据感知与处理分析、列车群运行状态的动态监控与调度,完成列车群自主仿真运行。仿真实验结果表明,在CTC智能体的智能监测和决策下,单列车及列车群模型可实现安全、高效地仿真运行。研究通过数据驱动建模,解决传统仿真系统模型精度不足、建模效率低下的问题,通过CTC智能体集中控制,实现列车群的协同仿真与自主决策,为构建自主化、智能化的铁路运输仿真系统提供了理论支撑和技术路径,为铁路线路及车站设计、能力评估提供高可信度仿真工具。 展开更多
关键词 数据驱动建模 铁路运行仿真 列车群多智能体 CTC智能体 自主感知控制
在线阅读 下载PDF
基于Tri-training与噪声过滤的弱监督关系抽取 被引量:2
9
作者 贾真 冶忠林 +1 位作者 尹红风 何大可 《中文信息学报》 CSCD 北大核心 2016年第4期142-149,158,共9页
弱监督关系抽取利用已有关系实体对从文本集中自动获取训练数据,有效解决了训练数据不足的问题。针对弱监督训练数据存在噪声、特征不足和不平衡,导致关系抽取性能不高的问题,文中提出NF-Tri-training(Tritraining with Noise Filtering... 弱监督关系抽取利用已有关系实体对从文本集中自动获取训练数据,有效解决了训练数据不足的问题。针对弱监督训练数据存在噪声、特征不足和不平衡,导致关系抽取性能不高的问题,文中提出NF-Tri-training(Tritraining with Noise Filtering)弱监督关系抽取算法。它利用欠采样解决样本不平衡问题,基于Tri-training从未标注数据中迭代学习新的样本,提高分类器的泛化能力,采用数据编辑技术识别并移除初始训练数据和每次迭代产生的错标样本。在互动百科采集数据集上实验结果表明NF-Tri-training算法能够有效提升关系分类器的性能。 展开更多
关键词 关系抽取 弱监督学习 TRI-trainING 数据编辑
在线阅读 下载PDF
基于Tri-Training半监督分类算法的研究 被引量:9
10
作者 张雁 吕丹桔 吴保国 《计算机技术与发展》 2013年第7期77-79,83,共4页
在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑... 在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析。实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点。 展开更多
关键词 半监督分类 Tri—training算法 数据编辑
在线阅读 下载PDF
基于Tri-Training和数据剪辑的半监督聚类算法 被引量:30
11
作者 邓超 郭茂祖 《软件学报》 EI CSCD 北大核心 2008年第3期663-673,共11页
提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术... 提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术对seeds集扩大过程中产生的误标记噪声数据进行修正、净化,以提高seeds集质量.实验结果表明,所提出的基于Tri-training和数据剪辑的DE-Tri-training半监督聚类新算法能够有效改善seeds集对聚类中心的初始化效果,提高聚类性能. 展开更多
关键词 半监督聚类 半监督分类 K-均值 seeds集 TRI-trainING Depuration数据剪辑
在线阅读 下载PDF
Contribution of the MERISE-Type Conceptual Data Model to the Construction of Monitoring and Evaluation Indicators of the Effectiveness of Training in Relation to the Needs of the Labor Market in the Republic of Congo
12
作者 Roch Corneille Ngoubou Basile Guy Richard Bossoto Régis Babindamana 《Open Journal of Applied Sciences》 2024年第8期2187-2200,共14页
This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for struct... This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation. 展开更多
关键词 MERISE Conceptual data Model (MCD) Monitoring Indicators Evaluation of training Effectiveness training-Employment Adequacy Labor Market Information Systems Analysis Adjustment of training Programs EMPLOYABILITY Professional Skills
在线阅读 下载PDF
基于自适应数据剪辑策略的Tri-training算法 被引量:15
13
作者 邓超 郭茂祖 《计算机学报》 EI CSCD 北大核心 2007年第8期1213-1226,共14页
Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用Remove O... Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用Remove Only剪辑操作对每次迭代可能产生的误标记样例识别并移除,更重要的是采用自适应策略来确定Remove Only触发与抑制的恰当时机.文中证明,PAC理论下自适应策略中一系列判别充分条件可同时确保新训练集规模迭代增大和新假设分类错误率迭代降低更多.UCI数据集上实验结果表明:ADE-Tri-training具有更好的分类泛化性能和健壮性. 展开更多
关键词 半监督学习 数据剪辑 自适应策略 PAC可学习 TRI-trainING
在线阅读 下载PDF
融合预训练语言模型的冠心病专病库建设及应用
14
作者 薛扬 侯旭敏 《软件导刊》 2026年第1期32-38,共7页
冠心病专病库的数据处理效率和准确性在临床研究与决策中发挥着至关重要的作用。因此,建设一个高效、准确的专病库是十分必要的,可支持临床研究者快速获取关键信息、优化治疗决策,从而提升患者的整体护理质量。基于Clinical-BERT+Bi-LST... 冠心病专病库的数据处理效率和准确性在临床研究与决策中发挥着至关重要的作用。因此,建设一个高效、准确的专病库是十分必要的,可支持临床研究者快速获取关键信息、优化治疗决策,从而提升患者的整体护理质量。基于Clinical-BERT+Bi-LSTM+CRF模型,结合数据平台与企业服务总线(ESB)对专病库数据处理进行优化。实验结果表明,数据抽取时间平均缩短了36倍(t=115.96,P<0.01),结构化数据的准确率提高了6.9%(χ2=222.41,P<0.01),说明这一优化能够有效提升冠心病专病库数据处理的效率和准确性,为冠心病的临床研究和决策提供了可靠的数据支持。 展开更多
关键词 冠心病 专病库建设 数据处理 预训练模型
在线阅读 下载PDF
高铁地震数据瑞雷面波和体波级联和联合全波形反演
15
作者 王磊 任志明 邵广周 《地球物理学报》 北大核心 2026年第1期310-321,共12页
全波形反演充分利用地震波的动力学和运动学信息,具有更高的建模精度.高架桥下方高铁地震信号是由多对轮组通过不同桥墩激发产生的混叠数据,波场成分复杂,极大地增加了全波形反演的不适定性.面波相对稳定且频率较低,反演时对初始模型依... 全波形反演充分利用地震波的动力学和运动学信息,具有更高的建模精度.高架桥下方高铁地震信号是由多对轮组通过不同桥墩激发产生的混叠数据,波场成分复杂,极大地增加了全波形反演的不适定性.面波相对稳定且频率较低,反演时对初始模型依赖性较弱,能精确重建浅层横波速度结构;体波传播时会发生反射、透射及模式转换,反演时依赖浅层速度的准确性,但穿透深度大,具有获取深部速度结构的潜力.本文结合高铁地震数据中瑞雷面波和体波各自的优势进行多波型级联和联合全波形反演,在不同反演阶段通过调整权重因子控制不同波的贡献.简单和复杂模型测试结果表明:在大尺度进行瑞雷面波和体波级联反演、中小尺度进行体波单独反演的多波型部分级联反演方法具有比瑞雷面波单独反演、体波单独反演、二者完全级联和联合反演更高的反演精度.在不增加计算量的情况下,瑞雷面波和体波部分级联全波形反演能有效缓解体波单独反演对初始模型依赖和面波单独反演穿透深度浅的问题.通过不同速度的多趟列车叠加可进一步压制高铁地震数据全波形反演的串扰噪声. 展开更多
关键词 高铁地震数据 全波形反演 瑞雷面波 体波 级联和联合反演
在线阅读 下载PDF
基于Tri-Training算法的数据编辑技术
16
作者 张雁 林英 吕丹桔 《计算机与数字工程》 2013年第10期1583-1585,共3页
Tri-Training是一种半监督学习算法,在少量标记数据下,通过三个不同的分类器,从未标记样本中采样并标记新的训练数据,作为各分类器训练数据的有效补充。但由于错误标记样本的存在,引入了噪音数据,降低了分类的性能。论文在Tri-Training... Tri-Training是一种半监督学习算法,在少量标记数据下,通过三个不同的分类器,从未标记样本中采样并标记新的训练数据,作为各分类器训练数据的有效补充。但由于错误标记样本的存在,引入了噪音数据,降低了分类的性能。论文在Tri-Training算法中分别采用DE-KNN,DE-BKNN和DE-NED三种数据编辑技术,识别移除误标记的数据。通过对六组UCI数据集的实验,分析结果表明,编辑技术的引入是有效的,三种方法的使用在一定程度上提升了Tri-Training算法的分类性能,尤其是DE-NED方法更为显著。 展开更多
关键词 半监督学习 Tri—training算法 数据编辑
在线阅读 下载PDF
用于在线产品评论质量分析的Co-training算法 被引量:6
17
作者 靳健 季平 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期289-295,共7页
在线评论广泛存在于电子商务网站平台,其中包含着客户对产品的评价及偏好.高效分析在线评论数据并满足客户需求,对许多谋求立足于竞争激烈的国际化市场的企业来说至关重要.但因在线评论的质量不一,使得如何分析在线评论的质量成为一项... 在线评论广泛存在于电子商务网站平台,其中包含着客户对产品的评价及偏好.高效分析在线评论数据并满足客户需求,对许多谋求立足于竞争激烈的国际化市场的企业来说至关重要.但因在线评论的质量不一,使得如何分析在线评论的质量成为一项重要工作.从两个方面提取特征对在线评论进行描述,并构建了一种Co-training算法来判断评论的质量.通过对比实验验证了该算法相对于单一分类算法的优势. 展开更多
关键词 数据质量 Co-training算法 在线产品评论 评论质量 文本挖掘 产品设计
在线阅读 下载PDF
基于改进Tri-Training算法的大数据保险业客户分类研究
18
作者 林志鸿 《韶关学院学报》 2018年第3期24-27,共4页
保险行业正处于比较快速的发展阶段,为了能够盈利,构建良好的客户关系是非常关键的,可利用改进TriTraining算法对大数据保险业客户进行分类.首先确定保险业客户细分的指标;其次分析改进Tri-Training分类算法的基本理论;再次设计基于改进... 保险行业正处于比较快速的发展阶段,为了能够盈利,构建良好的客户关系是非常关键的,可利用改进TriTraining算法对大数据保险业客户进行分类.首先确定保险业客户细分的指标;其次分析改进Tri-Training分类算法的基本理论;再次设计基于改进Tri-Training算法的大数据保险业客户分类流程;最后进行大数据保险业客户的分类实例研究,研究结果表明改进Tri-Training算法能够有效地提升保险业客户分类的精度. 展开更多
关键词 保险业 大数据 客户分类 改进Tri-training算法
在线阅读 下载PDF
Blockchain for Education:Verification and Management of Lifelong Learning Data 被引量:1
19
作者 Ba-Lam Do Van-Thanh Nguyen +2 位作者 Hoang-Nam Dinh Thanh-Chung Dao BinhMinh Nguyen 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期591-604,共14页
In recent years,blockchain technology has been applied in the educational domain because of its salient advantages,i.e.,transparency,decentralization,and immutability.Available systems typically use public blockchain ... In recent years,blockchain technology has been applied in the educational domain because of its salient advantages,i.e.,transparency,decentralization,and immutability.Available systems typically use public blockchain networks such as Ethereum and Bitcoin to store learning results.However,the cost of writing data on these networks is significant,making educational institutions limit data sent to the target network,typically containing only hash codes of the issued certificates.In this paper,we present a system based on a private blockchain network for lifelong learning data authentication and management named B4E(Blockchain For Education).B4E stores not only certificates but also learners’training data such as transcripts and educational programs in order to create a complete record of the lifelong education of each user and verify certificates that they have obtained.As a result,B4E can address two types of fake certificates,i.e.,certificates printed by unlawful organizations and certificates issued by educational institutions for learners who have not met the training requirements.In addition,B4E is designed to allow all participants to easily deploy software packages to manage,share,and check stored information without depending on a single point of access.As such,the system enhances the transparency and reliability of the stored data.Our experiments show that B4E meets expectations for deployment in reality. 展开更多
关键词 training data CERTIFICATE verification and management private blockchain
在线阅读 下载PDF
基于多视图Tri-Training的微博用户性别判断 被引量:2
20
作者 孙启蕴 《计算机系统应用》 2018年第2期240-244,共5页
互联网技术不断发展,新浪微博作为公开的网络社交平台拥有庞大的活跃用户.然而由于用户数量庞大,且个人信息并不一定真实,造成训练样本打标困难.本文采用了一种多视图tri-training的方法,构建三个不同的视图,利用这些视图中少量已打标... 互联网技术不断发展,新浪微博作为公开的网络社交平台拥有庞大的活跃用户.然而由于用户数量庞大,且个人信息并不一定真实,造成训练样本打标困难.本文采用了一种多视图tri-training的方法,构建三个不同的视图,利用这些视图中少量已打标样本和未打标样本不断重复互相训练三个不同的分类器,最后集成这三个分类器实现用户性别判断.本文用真实用户数据进行实验,发现和单一视图分类器相比,使用多视图tri-training学习训练后的分类器准确性更好,且需要打标的样本更少. 展开更多
关键词 性别判断 多视图学习 tri-training算法 数据挖掘
在线阅读 下载PDF
上一页 1 2 119 下一页 到第
使用帮助 返回顶部