The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability...The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.展开更多
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth...With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.展开更多
Sign language dataset is essential in sign language recognition and translation(SLRT). Current public sign language datasets are small and lack diversity, which does not meet the practical application requirements for...Sign language dataset is essential in sign language recognition and translation(SLRT). Current public sign language datasets are small and lack diversity, which does not meet the practical application requirements for SLRT. However, making a large-scale and diverse sign language dataset is difficult as sign language data on the Internet is scarce. In making a large-scale and diverse sign language dataset, some sign language data qualities are not up to standard. This paper proposes a two information streams transformer(TIST) model to judge whether the quality of sign language data is qualified. To verify that TIST effectively improves sign language recognition(SLR), we make two datasets, the screened dataset and the unscreened dataset. In this experiment, this paper uses visual alignment constraint(VAC) as the baseline model. The experimental results show that the screened dataset can achieve better word error rate(WER) than the unscreened dataset.展开更多
Data Streamer是微软开发的数据流采集插件,能够实时读取传感器采集的数据到Excel中进行分析。分别以“摩擦力实验数据可视化”“大气压强实验数据可视化”“固体融化时温度变化的规律实验数据可视化”为例,论述了如何在实验研究中结合...Data Streamer是微软开发的数据流采集插件,能够实时读取传感器采集的数据到Excel中进行分析。分别以“摩擦力实验数据可视化”“大气压强实验数据可视化”“固体融化时温度变化的规律实验数据可视化”为例,论述了如何在实验研究中结合传感技术,综合应用Data Streamer的数据采集技术和Excel的可视化分析技术,实时采集实验数据,并将其转换为实时变化的动态图象进行可视化展示和分析,为实验数据的可视化分析提供了新的思路和方法,可帮助研究者更准确地理解和掌握实验数据的变化规律。展开更多
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL...Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets.展开更多
Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims...Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims to elevate the efficiency and precision of data stream clustering,leveraging the TEDA(Typicality and Eccentricity Data Analysis)algorithm as a foundation,we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm.The original TEDA algorithm,grounded in the concept of“Typicality and Eccentricity Data Analytics”,represents an evolving and recursive method that requires no prior knowledge.While the algorithm autonomously creates and merges clusters as new data arrives,its efficiency is significantly hindered by the need to traverse all existing clusters upon the arrival of further data.This work presents the NS-TEDA(Neighbor Search Based Typicality and Eccentricity Data Analysis)algorithm by incorporating a KD-Tree(K-Dimensional Tree)algorithm integrated with the Scapegoat Tree.Upon arrival,this ensures that new data points interact solely with clusters in very close proximity.This significantly enhances algorithm efficiency while preventing a single data point from joining too many clusters and mitigating the merging of clusters with high overlap to some extent.We apply the NS-TEDA algorithm to several well-known datasets,comparing its performance with other data stream clustering algorithms and the original TEDA algorithm.The results demonstrate that the proposed algorithm achieves higher accuracy,and its runtime exhibits almost linear dependence on the volume of data,making it more suitable for large-scale data stream analysis research.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of ...Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of China’s Major Research Plan entitled“Fundamental Researches on the Formation and Response Mechanism of the Air Pollution Complex in China”(or the Plan)has funded 76 research projects to explore the causes of air pollution in China,and the key processes of air pollution in atmospheric physics and atmospheric chemistry.In order to summarize the abundant data from the Plan and exhibit the long-term impacts domestically and internationally,an integration project is responsible for collecting the various types of data generated by the 76 projects of the Plan.This project has classified and integrated these data,forming eight categories containing 258 datasets and 15 technical reports in total.The integration project has led to the successful establishment of the China Air Pollution Data Center(CAPDC)platform,providing storage,retrieval,and download services for the eight categories.This platform has distinct features including data visualization,related project information querying,and bilingual services in both English and Chinese,which allows for rapid searching and downloading of data and provides a solid foundation of data and support for future related research.Air pollution control in China,especially in the past decade,is undeniably a global exemplar,and this data center is the first in China to focus on research into the country’s air pollution complex.展开更多
As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and oper...As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].展开更多
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use...As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.展开更多
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facili...The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.展开更多
调查和分析元数据标准在健康科学数据中的应用现状,有助于为我国健康科学数据描述中元数据标准的选择、健康科学数据平台的建设提供参考。通过网络调研法对科学数据仓储注册系统(registry of research data repositories,re3data)中的...调查和分析元数据标准在健康科学数据中的应用现状,有助于为我国健康科学数据描述中元数据标准的选择、健康科学数据平台的建设提供参考。通过网络调研法对科学数据仓储注册系统(registry of research data repositories,re3data)中的健康科学数据管理平台进行调研,梳理所应用的元数据标准,分析典型元数据标准在平台中的应用情况,并归纳其在健康科学数据描述中的适用性。re3data中各健康科学数据平台共使用14种元数据标准,其中DC、DataCite、DDI、仓储自建元数据标准的使用最为广泛,多数平台组合使用多种元数据标准。各类元数据标准可分为通用型、社会科学型、自建型3类,分别适用于描述健康科学数据通用属性、社会科学研究产生的健康科学数据、特色和专业性强及政府开放的健康科学数据。展开更多
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr...Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.展开更多
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie...Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.展开更多
This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysi...This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.展开更多
基金funded by the Ongoing Research Funding Program(ORF-2025-890)King Saud University,Riyadh,Saudi Arabia and was supported by the Competitive Research Fund of theUniversity of Aizu,Japan.
文摘The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.
基金funded by the Joint Project of Industry-University-Research of Jiangsu Province(Grant:BY20231146).
文摘With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.
基金supported by the National Language Commission to research on sign language data specifications for artificial intelligence applications and test standards for language service translation systems (No.ZDI145-70)。
文摘Sign language dataset is essential in sign language recognition and translation(SLRT). Current public sign language datasets are small and lack diversity, which does not meet the practical application requirements for SLRT. However, making a large-scale and diverse sign language dataset is difficult as sign language data on the Internet is scarce. In making a large-scale and diverse sign language dataset, some sign language data qualities are not up to standard. This paper proposes a two information streams transformer(TIST) model to judge whether the quality of sign language data is qualified. To verify that TIST effectively improves sign language recognition(SLR), we make two datasets, the screened dataset and the unscreened dataset. In this experiment, this paper uses visual alignment constraint(VAC) as the baseline model. The experimental results show that the screened dataset can achieve better word error rate(WER) than the unscreened dataset.
文摘Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets.
基金This research was funded by the National Natural Science Foundation of China(Grant No.72001190)by the Ministry of Education’s Humanities and Social Science Project via the China Ministry of Education(Grant No.20YJC630173)by Zhejiang A&F University(Grant No.2022LFR062).
文摘Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims to elevate the efficiency and precision of data stream clustering,leveraging the TEDA(Typicality and Eccentricity Data Analysis)algorithm as a foundation,we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm.The original TEDA algorithm,grounded in the concept of“Typicality and Eccentricity Data Analytics”,represents an evolving and recursive method that requires no prior knowledge.While the algorithm autonomously creates and merges clusters as new data arrives,its efficiency is significantly hindered by the need to traverse all existing clusters upon the arrival of further data.This work presents the NS-TEDA(Neighbor Search Based Typicality and Eccentricity Data Analysis)algorithm by incorporating a KD-Tree(K-Dimensional Tree)algorithm integrated with the Scapegoat Tree.Upon arrival,this ensures that new data points interact solely with clusters in very close proximity.This significantly enhances algorithm efficiency while preventing a single data point from joining too many clusters and mitigating the merging of clusters with high overlap to some extent.We apply the NS-TEDA algorithm to several well-known datasets,comparing its performance with other data stream clustering algorithms and the original TEDA algorithm.The results demonstrate that the proposed algorithm achieves higher accuracy,and its runtime exhibits almost linear dependence on the volume of data,making it more suitable for large-scale data stream analysis research.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
基金supported by the National Natural Science Foundation of China(Grant No.92044303)。
文摘Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of China’s Major Research Plan entitled“Fundamental Researches on the Formation and Response Mechanism of the Air Pollution Complex in China”(or the Plan)has funded 76 research projects to explore the causes of air pollution in China,and the key processes of air pollution in atmospheric physics and atmospheric chemistry.In order to summarize the abundant data from the Plan and exhibit the long-term impacts domestically and internationally,an integration project is responsible for collecting the various types of data generated by the 76 projects of the Plan.This project has classified and integrated these data,forming eight categories containing 258 datasets and 15 technical reports in total.The integration project has led to the successful establishment of the China Air Pollution Data Center(CAPDC)platform,providing storage,retrieval,and download services for the eight categories.This platform has distinct features including data visualization,related project information querying,and bilingual services in both English and Chinese,which allows for rapid searching and downloading of data and provides a solid foundation of data and support for future related research.Air pollution control in China,especially in the past decade,is undeniably a global exemplar,and this data center is the first in China to focus on research into the country’s air pollution complex.
基金supported by National Natural Science Foundation of China(Grants 72474022,71974011,72174022,71972012,71874009)"BIT think tank"Promotion Plan of Science and Technology Innovation Program of Beijing Institute of Technology(Grants 2024CX14017,2023CX13029).
文摘As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].
基金supported by the National Key R&D Program of China(No.2023YFB2703700)the National Natural Science Foundation of China(Nos.U21A20465,62302457,62402444,62172292)+4 种基金the Fundamental Research Funds of Zhejiang Sci-Tech University(Nos.23222092-Y,22222266-Y)the Program for Leading Innovative Research Team of Zhejiang Province(No.2023R01001)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ24F020008,LQ24F020012)the Foundation of State Key Laboratory of Public Big Data(No.[2022]417)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C01119).
文摘As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
文摘The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.
文摘调查和分析元数据标准在健康科学数据中的应用现状,有助于为我国健康科学数据描述中元数据标准的选择、健康科学数据平台的建设提供参考。通过网络调研法对科学数据仓储注册系统(registry of research data repositories,re3data)中的健康科学数据管理平台进行调研,梳理所应用的元数据标准,分析典型元数据标准在平台中的应用情况,并归纳其在健康科学数据描述中的适用性。re3data中各健康科学数据平台共使用14种元数据标准,其中DC、DataCite、DDI、仓储自建元数据标准的使用最为广泛,多数平台组合使用多种元数据标准。各类元数据标准可分为通用型、社会科学型、自建型3类,分别适用于描述健康科学数据通用属性、社会科学研究产生的健康科学数据、特色和专业性强及政府开放的健康科学数据。
基金supported by the Key Research and Development Program of Jiangsu Province under Grant BE2022059-3,CTBC Bank through the Industry-Academia Cooperation Project,as well as by the Ministry of Science and Technology of Taiwan through Grants MOST-108-2218-E-002-055,MOST-109-2223-E-009-002-MY3,MOST-109-2218-E-009-025,and MOST431109-2218-E-002-015.
文摘Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.
基金supported by the Deanship of Graduate Studies and Scientific Research at University of Bisha for funding this research through the promising program under grant number(UB-Promising-33-1445).
文摘Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
基金Chongqing Engineering University Undergraduate Innovation and Entrepreneurship Training Program Project:Wireless Fire Automatic Alarm System(Project No.:CXCY2024017)Chongqing Municipal Education Commission Science and Technology Research Project:Development and Research of Chongqing Wireless Fire Automatic Alarm System(Project No.:KJQN202401906)。
文摘This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.