Progress in developing robust therapies for spinal cord injury (SCI), trau- matic brain injury (TBI) and peripheral nerve injury has been slow. A great deal has been learned over the past 30 years regarding both t...Progress in developing robust therapies for spinal cord injury (SCI), trau- matic brain injury (TBI) and peripheral nerve injury has been slow. A great deal has been learned over the past 30 years regarding both the intrinsic factors and the environmental factors that regulate axon growth, but this large body of information has not yet resulted in clinically available thera- peutics. This therapeutic bottleneck has many root causes, but a consensus is emerging that one contributing factor is a lack of standards for experi- mental design and reporting. The absence of reporting standards, and even of commonly accepted definitions of key words, also make data mining and bioinformatics analysis of neural plasticity and regeneration difficult, if not impossible. This short review will consider relevant background and poten- tial solutions to this problem in the axon regeneration domain.展开更多
Commentary Most would agree that providing comprehensive detail in scientific reporting is critical for the development of mean- ingful therapies and treatments for diseases. Such stellar practices 1) allow for repro...Commentary Most would agree that providing comprehensive detail in scientific reporting is critical for the development of mean- ingful therapies and treatments for diseases. Such stellar practices 1) allow for reproduction of experiments to con- firm results, 2) promote thorough analyses of data, and 3) foster the incremental advancement of valid approaches. Unfortunately, most would also agree we have far to go to reach this vital goal (Hackam and Redelmeier, 2006; Prinz et al., 2011; Baker et al., 2014).展开更多
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare re...With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems.展开更多
调查和分析元数据标准在健康科学数据中的应用现状,有助于为我国健康科学数据描述中元数据标准的选择、健康科学数据平台的建设提供参考。通过网络调研法对科学数据仓储注册系统(registry of research data repositories,re3data)中的...调查和分析元数据标准在健康科学数据中的应用现状,有助于为我国健康科学数据描述中元数据标准的选择、健康科学数据平台的建设提供参考。通过网络调研法对科学数据仓储注册系统(registry of research data repositories,re3data)中的健康科学数据管理平台进行调研,梳理所应用的元数据标准,分析典型元数据标准在平台中的应用情况,并归纳其在健康科学数据描述中的适用性。re3data中各健康科学数据平台共使用14种元数据标准,其中DC、DataCite、DDI、仓储自建元数据标准的使用最为广泛,多数平台组合使用多种元数据标准。各类元数据标准可分为通用型、社会科学型、自建型3类,分别适用于描述健康科学数据通用属性、社会科学研究产生的健康科学数据、特色和专业性强及政府开放的健康科学数据。展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
1.1. Development of international data exchange standards in securities field Securities market involves a large number of participants, like investors, securities companies, exchanges, clearingcorporations and so on...1.1. Development of international data exchange standards in securities field Securities market involves a large number of participants, like investors, securities companies, exchanges, clearingcorporations and so on. Businesses among the participants are completed via data exchange. Therefore, the data exchange protocols serve an important factor to determine and promote the sate and rapid development of the securities market.展开更多
In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occ...In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.展开更多
基金Research in the Lemmon/Bixby lab is supported by NIH grants NS080145 and NS059866by the Miami Project to Cure Paralysis
文摘Progress in developing robust therapies for spinal cord injury (SCI), trau- matic brain injury (TBI) and peripheral nerve injury has been slow. A great deal has been learned over the past 30 years regarding both the intrinsic factors and the environmental factors that regulate axon growth, but this large body of information has not yet resulted in clinically available thera- peutics. This therapeutic bottleneck has many root causes, but a consensus is emerging that one contributing factor is a lack of standards for experi- mental design and reporting. The absence of reporting standards, and even of commonly accepted definitions of key words, also make data mining and bioinformatics analysis of neural plasticity and regeneration difficult, if not impossible. This short review will consider relevant background and poten- tial solutions to this problem in the axon regeneration domain.
文摘Commentary Most would agree that providing comprehensive detail in scientific reporting is critical for the development of mean- ingful therapies and treatments for diseases. Such stellar practices 1) allow for reproduction of experiments to con- firm results, 2) promote thorough analyses of data, and 3) foster the incremental advancement of valid approaches. Unfortunately, most would also agree we have far to go to reach this vital goal (Hackam and Redelmeier, 2006; Prinz et al., 2011; Baker et al., 2014).
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.
文摘With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems.
文摘调查和分析元数据标准在健康科学数据中的应用现状,有助于为我国健康科学数据描述中元数据标准的选择、健康科学数据平台的建设提供参考。通过网络调研法对科学数据仓储注册系统(registry of research data repositories,re3data)中的健康科学数据管理平台进行调研,梳理所应用的元数据标准,分析典型元数据标准在平台中的应用情况,并归纳其在健康科学数据描述中的适用性。re3data中各健康科学数据平台共使用14种元数据标准,其中DC、DataCite、DDI、仓储自建元数据标准的使用最为广泛,多数平台组合使用多种元数据标准。各类元数据标准可分为通用型、社会科学型、自建型3类,分别适用于描述健康科学数据通用属性、社会科学研究产生的健康科学数据、特色和专业性强及政府开放的健康科学数据。
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
文摘1.1. Development of international data exchange standards in securities field Securities market involves a large number of participants, like investors, securities companies, exchanges, clearingcorporations and so on. Businesses among the participants are completed via data exchange. Therefore, the data exchange protocols serve an important factor to determine and promote the sate and rapid development of the securities market.
文摘In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.