Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate becau...Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs.展开更多
The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biolog...The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data.展开更多
MapReduce is a widely used programming model for large-scale data processing.However,it still suffers from the skew problem,which refers to the case in which load is imbalanced among tasks.This problem can cause a sma...MapReduce is a widely used programming model for large-scale data processing.However,it still suffers from the skew problem,which refers to the case in which load is imbalanced among tasks.This problem can cause a small number of tasks to consume much more time than other tasks,thereby prolonging the total job completion time.Existing solutions to this problem commonly predict the loads of tasks and then rebalance the load among them.However,solutions of this kind often incur high performance overhead due to the load prediction and rebalancing.Moreover,existing solutions target the partitioning skew for reduce tasks,but cannot mitigate the computational skew for map tasks.Accordingly,in this paper,we present DynamicAdjust,a run-time dynamic resource adjustment technique for mitigating skew.Rather than rebalancing the load among tasks,DynamicAdjust monitors the run-time execution of tasks and dynamically increases resources for those tasks that require more computation.In so doing,DynamicAdjust can not only eliminate the overhead incurred by load prediction and rebalancing,but also culls both the partitioning skew and the computational skew.Experiments are conducted based on a 21-node real cluster using real-world datasets.The results show that DynamicAdjust can mitigate the negative impact of the skew and shorten the job completion time by up to 40.85%.展开更多
This paper focuses on the parallel aggregation processing of data streams based on the shared-nothing architecture. A novel granularity-aware parallel aggregating model is proposed. It employs parallel sampling and li...This paper focuses on the parallel aggregation processing of data streams based on the shared-nothing architecture. A novel granularity-aware parallel aggregating model is proposed. It employs parallel sampling and linear regression to describe the characteristics of the data quantity in the query window in order to determine the partition granularity of tuples, and utilizes equal depth histogram to implement partitio ning. This method can avoid data skew and reduce communi cation cost. The experiment results on both synthetic data and actual data prove that the proposed method is efficient, practical and suitable for time-varying data streams processing.展开更多
文摘Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs.
文摘The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data.
基金funded by the Key Area Research and Development Program of Guangdong Province(2019B010137005)the National Natural Science Foundation of China(61906209).
文摘MapReduce is a widely used programming model for large-scale data processing.However,it still suffers from the skew problem,which refers to the case in which load is imbalanced among tasks.This problem can cause a small number of tasks to consume much more time than other tasks,thereby prolonging the total job completion time.Existing solutions to this problem commonly predict the loads of tasks and then rebalance the load among them.However,solutions of this kind often incur high performance overhead due to the load prediction and rebalancing.Moreover,existing solutions target the partitioning skew for reduce tasks,but cannot mitigate the computational skew for map tasks.Accordingly,in this paper,we present DynamicAdjust,a run-time dynamic resource adjustment technique for mitigating skew.Rather than rebalancing the load among tasks,DynamicAdjust monitors the run-time execution of tasks and dynamically increases resources for those tasks that require more computation.In so doing,DynamicAdjust can not only eliminate the overhead incurred by load prediction and rebalancing,but also culls both the partitioning skew and the computational skew.Experiments are conducted based on a 21-node real cluster using real-world datasets.The results show that DynamicAdjust can mitigate the negative impact of the skew and shorten the job completion time by up to 40.85%.
基金Supported by Foundation of High Technology Pro-ject of Jiangsu (BG2004034) , Foundation of Graduate Creative Pro-gramof Jiangsu (xm04-36)
文摘This paper focuses on the parallel aggregation processing of data streams based on the shared-nothing architecture. A novel granularity-aware parallel aggregating model is proposed. It employs parallel sampling and linear regression to describe the characteristics of the data quantity in the query window in order to determine the partition granularity of tuples, and utilizes equal depth histogram to implement partitio ning. This method can avoid data skew and reduce communi cation cost. The experiment results on both synthetic data and actual data prove that the proposed method is efficient, practical and suitable for time-varying data streams processing.