Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem....Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.展开更多
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da...Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.展开更多
The accurate prediction of battery pack capacity in electric vehicles(EVs)is crucial for ensuring safety and optimizing performance.Despite extensive research on predicting cell capacity using laboratory data,predicti...The accurate prediction of battery pack capacity in electric vehicles(EVs)is crucial for ensuring safety and optimizing performance.Despite extensive research on predicting cell capacity using laboratory data,predicting the capacity of onboard battery packs from field data remains challenging due to complex operating conditions and irregular EV usage in real-world settings.Most existing methods rely on extracting health feature parameters from raw data for capacity prediction of onboard battery packs,however,selecting specific parameters often results in a loss of critical information,which reduces prediction accuracy.To this end,this paper introduces a novel framework combining deep learning and data compression techniques to accurately predict battery pack capacity onboard.The proposed data compression method converts monthly EV charging data into feature maps,which preserve essential data characteristics while reducing the volume of raw data.To address missing capacity labels in field data,a capacity labeling method is proposed,which calculates monthly battery capacity by transforming the ampere-hour integration formula and applying linear regression.Subsequently,a deep learning model is proposed to build a capacity prediction model,using feature maps from historical months to predict the battery capacity of future months,thus facilitating accurate forecasts.The proposed framework,evaluated using field data from 20 EVs,achieves a mean absolute error of 0.79 Ah,a mean absolute percentage error of 0.65%,and a root mean square error of 1.02 Ah,highlighting its potential for real-world EV applications.展开更多
The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and ...The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.展开更多
The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,suc...The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,such as ticks and glitches,which hamper further seismological studies.This paper presents step-by-step processing of InSight’s Very Broad Band seismic data,focusing on the suppression and removal of non-seismic noise.The processing stages include tick noise removal,glitch signal suppression,multicomponent synchronization,instrument response correction,and rotation of orthogonal components.The processed datasets and associated codes are openly accessible and will support ongoing efforts to explore the geophysical properties of Mars and contribute to the broader field of planetary seismology.展开更多
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth...With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.展开更多
Previous studies aiming to accelerate data processing have focused on enhancement algorithms,using the graphics processing unit(GPU)to speed up programs,and thread-level parallelism.These methods overlook maximizing t...Previous studies aiming to accelerate data processing have focused on enhancement algorithms,using the graphics processing unit(GPU)to speed up programs,and thread-level parallelism.These methods overlook maximizing the utilization of existing central processing unit(CPU)resources and reducing human and computational time costs via process automation.Accordingly,this paper proposes a scheme,called SSM,that combines“Srun job submission mode”,“Sbatch job submission mode”,and“Monitor function”.The SSM scheme includes three main modules:data management,command management,and resource management.Its core innovations are command splitting and parallel execution.The results show that this method effectively improves CPU utilization and reduces the time required for data processing.In terms of CPU utilization,the average value of this scheme is 89%.In contrast,the average CPU utilizations of“Srun job submission mode”and“Sbatch job submission mode”are significantly lower,at 43%and 52%,respectively.In terms of the data-processing time,SSM testing on the Five-hundred-meter Aperture Spherical radio Telescope(FAST)data requires only 5.5 h,compared with 8 h in the“Srun job submission mode”and 14 h in the“Sbatch job submission mode”.In addition,tests on the FAST and Parkes datasets demonstrate the universality of the SSM scheme,which can process data from different telescopes.The compatibility of the SSM scheme for pulsar searches is verified using 2 days of observational data from the globular cluster M2,with the scheme successfully discovering all published pulsars in M2.展开更多
The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a pytho...The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a python-based package(GT-scopy)for data processing and enhancing for giant solar telescopes,with application to the 1.6 m Goode Solar Telescope(GST)at Big Bear Solar Observatory.The objective is to develop a modern data processing software for refining existing data acquisition,processing,and enhancement methodologies to achieve atmospheric effect removal and accurate alignment at the sub-pixel level,particularly within the processing levels 1.0-1.5.In this research,we implemented an integrated and comprehensive data processing procedure that includes image de-rotation,zone-of-interest selection,coarse alignment,correction for atmospheric distortions,and fine alignment at the sub-pixel level with an advanced algorithm.The results demonstrate a significant improvement in image quality,with enhanced visibility of fine solar structures both in sunspots and quiet-Sun regions.The enhanced data processing package developed in this study significantly improves the utility of data obtained from the GST,paving the way for more precise solar research and contributing to a better understanding of solar dynamics.This package can be adapted for other ground-based solar telescopes,such as the Daniel K.Inouye Solar Telescope(DKIST),the European Solar Telescope(EST),and the 8 m Chinese Giant Solar Telescope,potentially benefiting the broader solar physics community.展开更多
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol...During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.展开更多
The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured d...The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.展开更多
To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,al...To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance.展开更多
Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre...Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.展开更多
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is di...Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.展开更多
As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and...As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.展开更多
The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark ...The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark State Magnetometer)probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.展开更多
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i...A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.展开更多
This paper proposes a new method for the compression of vector data map. Three key steps are encompassed in the proposed method, namely, the simplification of vector data map via the elimination of vertices, the compr...This paper proposes a new method for the compression of vector data map. Three key steps are encompassed in the proposed method, namely, the simplification of vector data map via the elimination of vertices, the compression of re- moved vertices based on a clustering model, and the decoding of the compressed vector data map. The proposed compres- sion method was implemented and applied to compress vector data map to investigate its performance in terms of the com- pression ratio and distortions of geometric shapes. The results show that the proposed method provides a feasible and effi- cient solution for the compression of vector data map and is able to achieve a promising ratio of compression and maintain the main shape characteristics of the spatial objects within the compressed vector data map.展开更多
Low-field(nuclear magnetic resonance)NMR has been widely used in petroleum industry,such as well logging and laboratory rock core analysis.However,the signal-to-noise ratio is low due to the low magnetic field strengt...Low-field(nuclear magnetic resonance)NMR has been widely used in petroleum industry,such as well logging and laboratory rock core analysis.However,the signal-to-noise ratio is low due to the low magnetic field strength of NMR tools and the complex petrophysical properties of detected samples.Suppressing the noise and highlighting the available NMR signals is very important for subsequent data processing.Most denoising methods are normally based on fixed mathematical transformation or handdesign feature selectors to suppress noise characteristics,which may not perform well because of their non-adaptive performance to different noisy signals.In this paper,we proposed a“data processing framework”to improve the quality of low field NMR echo data based on dictionary learning.Dictionary learning is a machine learning method based on redundancy and sparse representation theory.Available information in noisy NMR echo data can be adaptively extracted and reconstructed by dictionary learning.The advantages and application effectiveness of the proposed method were verified with a number of numerical simulations,NMR core data analyses,and NMR logging data processing.The results show that dictionary learning can significantly improve the quality of NMR echo data with high noise level and effectively improve the accuracy and reliability of inversion results.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
基金supported by the Start-up Fund from Hainan University(No.KYQD(ZR)-20077)。
文摘Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.
基金supported in part by the Science and Technology Department of Sichuan Province(No.2025ZNSFSC0427,No.2024ZDZX0035)the Open Project Fund of Vehicle Measurement,Control and Safety Key Laboratory of Sichuan Province(No.QCCK2024-004)the Industrial and Educational Integration Project of Yibin(No.YB-XHU-20240001)。
文摘The accurate prediction of battery pack capacity in electric vehicles(EVs)is crucial for ensuring safety and optimizing performance.Despite extensive research on predicting cell capacity using laboratory data,predicting the capacity of onboard battery packs from field data remains challenging due to complex operating conditions and irregular EV usage in real-world settings.Most existing methods rely on extracting health feature parameters from raw data for capacity prediction of onboard battery packs,however,selecting specific parameters often results in a loss of critical information,which reduces prediction accuracy.To this end,this paper introduces a novel framework combining deep learning and data compression techniques to accurately predict battery pack capacity onboard.The proposed data compression method converts monthly EV charging data into feature maps,which preserve essential data characteristics while reducing the volume of raw data.To address missing capacity labels in field data,a capacity labeling method is proposed,which calculates monthly battery capacity by transforming the ampere-hour integration formula and applying linear regression.Subsequently,a deep learning model is proposed to build a capacity prediction model,using feature maps from historical months to predict the battery capacity of future months,thus facilitating accurate forecasts.The proposed framework,evaluated using field data from 20 EVs,achieves a mean absolute error of 0.79 Ah,a mean absolute percentage error of 0.65%,and a root mean square error of 1.02 Ah,highlighting its potential for real-world EV applications.
基金the National Natural Science Foundation of China(Grant Nos.52308403 and 52079068)the Yunlong Lake Laboratory of Deep Underground Science and Engineering(No.104023005)the China Postdoctoral Science Foundation(Grant No.2023M731998)for funding provided to this work.
文摘The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.
基金supported by the National Key R&D Program of China(Nos.2022YFF 0503203 and 2024YFF0809900)the Research Funds of the Institute of Geophysics,China Earthquake Administration(No.DQJB24X28)the National Natural Science Foundation of China(Nos.42474226 and 42441827).
文摘The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,such as ticks and glitches,which hamper further seismological studies.This paper presents step-by-step processing of InSight’s Very Broad Band seismic data,focusing on the suppression and removal of non-seismic noise.The processing stages include tick noise removal,glitch signal suppression,multicomponent synchronization,instrument response correction,and rotation of orthogonal components.The processed datasets and associated codes are openly accessible and will support ongoing efforts to explore the geophysical properties of Mars and contribute to the broader field of planetary seismology.
基金funded by the Joint Project of Industry-University-Research of Jiangsu Province(Grant:BY20231146).
文摘With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.
基金supported by the National Nature Science Foundation of China(12363010)supported by the Guizhou Provincial Basic Research Program(Natural Science)(ZK[2023]039)the Key Technology R&D Program([2023]352).
文摘Previous studies aiming to accelerate data processing have focused on enhancement algorithms,using the graphics processing unit(GPU)to speed up programs,and thread-level parallelism.These methods overlook maximizing the utilization of existing central processing unit(CPU)resources and reducing human and computational time costs via process automation.Accordingly,this paper proposes a scheme,called SSM,that combines“Srun job submission mode”,“Sbatch job submission mode”,and“Monitor function”.The SSM scheme includes three main modules:data management,command management,and resource management.Its core innovations are command splitting and parallel execution.The results show that this method effectively improves CPU utilization and reduces the time required for data processing.In terms of CPU utilization,the average value of this scheme is 89%.In contrast,the average CPU utilizations of“Srun job submission mode”and“Sbatch job submission mode”are significantly lower,at 43%and 52%,respectively.In terms of the data-processing time,SSM testing on the Five-hundred-meter Aperture Spherical radio Telescope(FAST)data requires only 5.5 h,compared with 8 h in the“Srun job submission mode”and 14 h in the“Sbatch job submission mode”.In addition,tests on the FAST and Parkes datasets demonstrate the universality of the SSM scheme,which can process data from different telescopes.The compatibility of the SSM scheme for pulsar searches is verified using 2 days of observational data from the globular cluster M2,with the scheme successfully discovering all published pulsars in M2.
基金supported by the National Natural Science Foundation of China(NSFC,12173012 and 12473050)the Guangdong Natural Science Funds for Distinguished Young Scholars(2023B1515020049)+2 种基金the Shenzhen Science and Technology Project(JCYJ20240813104805008)the Shenzhen Key Laboratory Launching Project(No.ZDSYS20210702140800001)the Specialized Research Fund for State Key Laboratory of Solar Activity and Space Weather。
文摘The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a python-based package(GT-scopy)for data processing and enhancing for giant solar telescopes,with application to the 1.6 m Goode Solar Telescope(GST)at Big Bear Solar Observatory.The objective is to develop a modern data processing software for refining existing data acquisition,processing,and enhancement methodologies to achieve atmospheric effect removal and accurate alignment at the sub-pixel level,particularly within the processing levels 1.0-1.5.In this research,we implemented an integrated and comprehensive data processing procedure that includes image de-rotation,zone-of-interest selection,coarse alignment,correction for atmospheric distortions,and fine alignment at the sub-pixel level with an advanced algorithm.The results demonstrate a significant improvement in image quality,with enhanced visibility of fine solar structures both in sunspots and quiet-Sun regions.The enhanced data processing package developed in this study significantly improves the utility of data obtained from the GST,paving the way for more precise solar research and contributing to a better understanding of solar dynamics.This package can be adapted for other ground-based solar telescopes,such as the Daniel K.Inouye Solar Telescope(DKIST),the European Solar Telescope(EST),and the 8 m Chinese Giant Solar Telescope,potentially benefiting the broader solar physics community.
基金Supported by the National Natural Science Foundation of China(U24B2031)National Key Research and Development Project(2018YFA0702504)"14th Five-Year Plan"Science and Technology Project of CNOOC(KJGG2022-0201)。
文摘During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.
文摘The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.
基金Weaponry Equipment Pre-Research Foundation of PLA Equipment Ministry (No. 9140A06050409JB8102)Pre-Research Foundation of PLA University of Science and Technology (No. 2009JSJ11)
文摘To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance.
基金Supported by the National Natural Science Foundation of China(61076019,61106018)the Aeronautical Science Foundation of China(20115552031)+3 种基金the China Postdoctoral Science Foundation(20100481134)the Jiangsu Province Key Technology R&D Program(BE2010003)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010115)the Nanjing University of Aeronatics and Astronautics Initial Funding for Talented Faculty(1004-YAH10027)~~
文摘Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
文摘Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.
基金the NBI team and the partial support of National Natural Science Foundation of China (No. 61363019)National Natural Science Foundation of Qinghai Province (No. 2014-ZJ-718)
文摘As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.
基金supported by National Key Research and Development Program of China from MOST (2016YFB0501503)
文摘The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark State Magnetometer)probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.
基金This project was supported by the National Natural Science Foundation of China (60532060)Hainan Education Bureau Research Project (Hjkj200602)Hainan Natural Science Foundation (80551).
文摘A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.
基金Supported by the National 863 Program of China (No. 2007AAI2Z241), the Program for New Century Excellent Talents in University (No. NCET-07-0643), the National Natural Science Foundation of China (No. 40571134, No. 40871185), the National 973 Program of China (No. 108085).
文摘This paper proposes a new method for the compression of vector data map. Three key steps are encompassed in the proposed method, namely, the simplification of vector data map via the elimination of vertices, the compression of re- moved vertices based on a clustering model, and the decoding of the compressed vector data map. The proposed compres- sion method was implemented and applied to compress vector data map to investigate its performance in terms of the com- pression ratio and distortions of geometric shapes. The results show that the proposed method provides a feasible and effi- cient solution for the compression of vector data map and is able to achieve a promising ratio of compression and maintain the main shape characteristics of the spatial objects within the compressed vector data map.
基金supported by Science Foundation of China University of Petroleum,Beijing(Grant Number ZX20210024)Chinese Postdoctoral Science Foundation(Grant Number 2021M700172)+1 种基金The Strategic Cooperation Technology Projects of CNPC and CUP(Grant Number ZLZX2020-03)National Natural Science Foundation of China(Grant Number 42004105)
文摘Low-field(nuclear magnetic resonance)NMR has been widely used in petroleum industry,such as well logging and laboratory rock core analysis.However,the signal-to-noise ratio is low due to the low magnetic field strength of NMR tools and the complex petrophysical properties of detected samples.Suppressing the noise and highlighting the available NMR signals is very important for subsequent data processing.Most denoising methods are normally based on fixed mathematical transformation or handdesign feature selectors to suppress noise characteristics,which may not perform well because of their non-adaptive performance to different noisy signals.In this paper,we proposed a“data processing framework”to improve the quality of low field NMR echo data based on dictionary learning.Dictionary learning is a machine learning method based on redundancy and sparse representation theory.Available information in noisy NMR echo data can be adaptively extracted and reconstructed by dictionary learning.The advantages and application effectiveness of the proposed method were verified with a number of numerical simulations,NMR core data analyses,and NMR logging data processing.The results show that dictionary learning can significantly improve the quality of NMR echo data with high noise level and effectively improve the accuracy and reliability of inversion results.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.