The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1...The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.展开更多
There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analys...There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.展开更多
POLAR is a compact space-borne detector initially designed to measure the polarization of hard X-rays emitted from Gamma-Ray Bursts in the energy range 50–500 ke V.This instrument was launched successfully onboard th...POLAR is a compact space-borne detector initially designed to measure the polarization of hard X-rays emitted from Gamma-Ray Bursts in the energy range 50–500 ke V.This instrument was launched successfully onboard the Chinese space laboratory Tiangong-2(TG-2) on 2016 September 15.After being switched on a few days later,tens of gigabytes of raw detection data were produced in-orbit by POLAR and transferred to the ground every day.Before the launch date,a full pipeline and related software were designed and developed for the purpose of quickly pre-processing all the raw data from POLAR,which include both science data and engineering data,then to generate the high level scientific data products that are suitable for later science analysis.This pipeline has been successfully applied for use by the POLAR Science Data Center in the Institute of High Energy Physics(IHEP) after POLAR was launched and switched on.A detailed introduction to the pipeline and some of the core relevant algorithms are presented in this paper.展开更多
Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process en...Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process environment for pre-processing performance can be improved by up to 560.65% from single processing system. Through this, analysis performance in various fields can be improved, and moreover, near-real time service can be achieved in near future.展开更多
Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the e...Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Efficient denoising is often a necessary and the first step to be taken before the image data is analyzed to compensate for data corruption and for effective utilization for these data. Hence preprocessing of microarray image is an essential to eliminate the background noise in order to enhance the image quality and effective quantification. Existing denoising techniques based on transformed domain have been utilized for microarray noise reduction with their own limitations. The objective of this paper is to introduce novel preprocessing techniques such as optimized spatial resolution (OSR) and spatial domain filtering (SDF) for reduction of noise from microarray data and reduction of error during quantification process for estimating the microarray spots accurately to determine expression level of genes. Besides combined optimized spatial resolution and spatial filtering is proposed and found improved denoising of microarray data with effective quantification of spots. The proposed method has been validated in microarray images of gene expression profiles of Myeloid Leukemia using Stanford Microarray Database with various quality measures such as signal to noise ratio, peak signal to noise ratio, image fidelity, structural content, absolute average difference and correlation quality. It was observed by quantitative analysis that the proposed technique is more efficient for denoising the microarray image which enables to make it suitable for effective quantification.展开更多
The large-scale deployment of intelligent Internet of things(IoT)devices have brought increasing needs for computation support in wireless access networks.Applying machine learning(ML)algorithms at the network edge,i....The large-scale deployment of intelligent Internet of things(IoT)devices have brought increasing needs for computation support in wireless access networks.Applying machine learning(ML)algorithms at the network edge,i.e.,edge learning,requires efficient training,in order to adapt themselves to the varying environment.However,the transmission of the training data collected by devices requires huge wireless resources.To address this issue,we exploit the fact that data samples have different importance for training,and use an influence function to represent the importance.Based on the importance metric,we propose a data pre-processing scheme combining data filtering that reduces the size of dataset and data compression that removes redundant information.As a result,the number of data samples as well as the size of every data sample to be transmitted can be substantially reduced while keeping the training accuracy.Furthermore,we propose device scheduling policies,including rate-based and Monte-Carlo-based policies,for multi-device multi-channel systems,maximizing the summation of data importance of scheduled devices.Experiments show that the proposed device scheduling policies bring more than 2%improvement in training accuracy.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ...Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.展开更多
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati...In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference.展开更多
Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching eng...Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching engines. However, state-of-theart matching methods often require a significant amount of pre-processing time and hence are not suitable for this fast updating scenario. In this paper, a novel matching engine called BFA is proposed to achieve high-speed regular expression matching with fast pre-processing. Experiments demonstrate that BFA obtains 5 to 20 times more update abilities compared to existing regular expression matching methods, and scales well on multi-core platforms.展开更多
In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.How...The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.However,the complexity of resource allocation is increased because of the large number of tasks and satellites.Therefore,the primary problem of implementing concurrent multiple tasks via LEO mega-constellation is to pre-process tasks and observation re-sources.To address the challenge,we propose a pre-processing algorithm for the mega-constellation based on highly Dynamic Spatio-Temporal Grids(DSTG).In the first stage,this paper describes the management model of mega-constellation and the multiple tasks.Then,the coding method of DSTG is proposed,based on which the description of complex mega-constellation observation resources is realized.In the third part,the DSTG algorithm is used to realize the processing of concurrent multiple tasks at multiple levels,such as task space attribute,time attribute and grid task importance evaluation.Finally,the simulation result of the proposed method in the case of constellation has been given to verify the effectiveness of concurrent multi-task pre-processing based on DSTG.The autonomous processing process of task decomposition and task fusion and mapping to grids,and the convenient indexing process of time window are verified.展开更多
In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. Ho...In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.展开更多
High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution.Preprocessing of ice cor...High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution.Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming,produces qualitative data,leads to ice mass loss,and leads to risks of potential secondary pollution.However,over the past several decades,preprocessing of ice cores has received less attention than the improvement of ice drilling,the analytical methodology of various indices,and the researches on the climatic and environmental significance of ice core records.Therefore,this papers reviews the development of the processing for ice cores including framework,design as well as materials,analyzes the technical advantages and disadvantages of the different systems.In the past,continuous flowanalysis(CFA)has been successfully applied to process the polar ice cores.However,it is not suitable for ice cores outside polar region because of high level of particles,the memory effect between samples,and the filtration before injection.Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores,which aggravates uncertainty in the measurements.The future developments of CFA are discussed in preprocessing,memory effect,challenge for brittle ice,coupling with real-time analysis and optimization of CFA in the field.Furthermore,non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core.This system also needs to be coupled with streamlined operation of packaging,coding,and stacking that can be implemented at high resolution and rate,avoiding manual intervention.At the same time,information of the longitudinal sections could be scanned andidentified,and then classified to obtain quantitative data.In addition,irregular ice volume and weight can also be obtained accurately.These improvements are recorded automatically via user-friendly interfaces.These innovations may be applied to other paleomedias with similar features and needs.展开更多
Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morp...Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morphology is to use construction ele- ment measure image morphology for solving understand problem.The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter.It gave the theo- ries of MMCNN dynamic extent and stable state.It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.展开更多
A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanica...A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanical systems.Firstly,the singular points of original signals are eliminated effectively by using the first-order difference method.Then the OVMD method is applied for signal modal decomposition.Furthermore,correlation analysis is conducted to determine the degree of correlation between each mode and the original signal,so as to accurately separate the real operating signal from noise signal.On the basis of theoretical analysis and simulation,an edge node pre-processing system for distributed electromechanical system is designed.Finally,by virtue of the signal-to-noise ratio(SNR)and root-mean-square error(RMSE)indicators,the signal pre-processing effect is evaluated.The experimental results show that the OVMD-based edge node pre-processing system can extract signals with different characteristics and improve the SNR of reconstructed signals.Due to its high fidelity and reliability,this system can also provide data quality assurance for subsequent system health monitoring and fault diagnosis.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or ve...The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or very large complicated structures, we must use the parallel algorithm with the aid of high-performance computers to solve complex problems. This paper introduces the implementation process having the parallel with sparse linear equations from the perspective of sparse linear equation group.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
文摘The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.
基金Key Science and Technology Project of the Shanghai Committee of Science and Technology, China (No.06dz1200921)Major Basic Research Project of the Shanghai Committee of Science and Technology(No.08JC1400100)+1 种基金Shanghai Talent Developing Foundation, China(No.001)Specialized Foundation for Excellent Talent of Shanghai,China
文摘There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.
基金financial support from the Joint Research Fund in Astronomy under a cooperative agreement between the National Natural Science Foundation of China and the Chinese Academy of Sciences (Grant No. U1631242)the National Natural Science Foundation of China (Grant Nos. 11503028 and 11403028)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB23040400)the National Basic Research Program (973 Program) of China (2014CB845800)
文摘POLAR is a compact space-borne detector initially designed to measure the polarization of hard X-rays emitted from Gamma-Ray Bursts in the energy range 50–500 ke V.This instrument was launched successfully onboard the Chinese space laboratory Tiangong-2(TG-2) on 2016 September 15.After being switched on a few days later,tens of gigabytes of raw detection data were produced in-orbit by POLAR and transferred to the ground every day.Before the launch date,a full pipeline and related software were designed and developed for the purpose of quickly pre-processing all the raw data from POLAR,which include both science data and engineering data,then to generate the high level scientific data products that are suitable for later science analysis.This pipeline has been successfully applied for use by the POLAR Science Data Center in the Institute of High Energy Physics(IHEP) after POLAR was launched and switched on.A detailed introduction to the pipeline and some of the core relevant algorithms are presented in this paper.
基金supported by the Sharing and Diffusion of National R&D Outcome funded by the Korea Institute of Science and Technology Information
文摘Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process environment for pre-processing performance can be improved by up to 560.65% from single processing system. Through this, analysis performance in various fields can be improved, and moreover, near-real time service can be achieved in near future.
文摘Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Efficient denoising is often a necessary and the first step to be taken before the image data is analyzed to compensate for data corruption and for effective utilization for these data. Hence preprocessing of microarray image is an essential to eliminate the background noise in order to enhance the image quality and effective quantification. Existing denoising techniques based on transformed domain have been utilized for microarray noise reduction with their own limitations. The objective of this paper is to introduce novel preprocessing techniques such as optimized spatial resolution (OSR) and spatial domain filtering (SDF) for reduction of noise from microarray data and reduction of error during quantification process for estimating the microarray spots accurately to determine expression level of genes. Besides combined optimized spatial resolution and spatial filtering is proposed and found improved denoising of microarray data with effective quantification of spots. The proposed method has been validated in microarray images of gene expression profiles of Myeloid Leukemia using Stanford Microarray Database with various quality measures such as signal to noise ratio, peak signal to noise ratio, image fidelity, structural content, absolute average difference and correlation quality. It was observed by quantitative analysis that the proposed technique is more efficient for denoising the microarray image which enables to make it suitable for effective quantification.
基金This work is sponsored in part by the National Natural Science Foundation of China under grants of 62022049,62111530197,and 61871254Hitachi Ltd.Part of this work has been presented in IEEE ICC 2020[1].
文摘The large-scale deployment of intelligent Internet of things(IoT)devices have brought increasing needs for computation support in wireless access networks.Applying machine learning(ML)algorithms at the network edge,i.e.,edge learning,requires efficient training,in order to adapt themselves to the varying environment.However,the transmission of the training data collected by devices requires huge wireless resources.To address this issue,we exploit the fact that data samples have different importance for training,and use an influence function to represent the importance.Based on the importance metric,we propose a data pre-processing scheme combining data filtering that reduces the size of dataset and data compression that removes redundant information.As a result,the number of data samples as well as the size of every data sample to be transmitted can be substantially reduced while keeping the training accuracy.Furthermore,we propose device scheduling policies,including rate-based and Monte-Carlo-based policies,for multi-device multi-channel systems,maximizing the summation of data importance of scheduled devices.Experiments show that the proposed device scheduling policies bring more than 2%improvement in training accuracy.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.
基金This paper is supported by the National Natural Science Foundation ofChina (No .40371107) .
文摘In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference.
基金supported by the National Key Technology R&D Program of China under Grant No. 2015BAK34B00the National Key Research and Development Program of China under Grant No. 2016YFB1000102
文摘Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching engines. However, state-of-theart matching methods often require a significant amount of pre-processing time and hence are not suitable for this fast updating scenario. In this paper, a novel matching engine called BFA is proposed to achieve high-speed regular expression matching with fast pre-processing. Experiments demonstrate that BFA obtains 5 to 20 times more update abilities compared to existing regular expression matching methods, and scales well on multi-core platforms.
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
基金supported by the National Natural Science Foundation of China(Nos.62003115 and 11972130)the Shenzhen Science and Technology Program,China(JCYJ20220818102207015)the Heilongjiang Touyan Team Program,China。
文摘The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.However,the complexity of resource allocation is increased because of the large number of tasks and satellites.Therefore,the primary problem of implementing concurrent multiple tasks via LEO mega-constellation is to pre-process tasks and observation re-sources.To address the challenge,we propose a pre-processing algorithm for the mega-constellation based on highly Dynamic Spatio-Temporal Grids(DSTG).In the first stage,this paper describes the management model of mega-constellation and the multiple tasks.Then,the coding method of DSTG is proposed,based on which the description of complex mega-constellation observation resources is realized.In the third part,the DSTG algorithm is used to realize the processing of concurrent multiple tasks at multiple levels,such as task space attribute,time attribute and grid task importance evaluation.Finally,the simulation result of the proposed method in the case of constellation has been given to verify the effectiveness of concurrent multi-task pre-processing based on DSTG.The autonomous processing process of task decomposition and task fusion and mapping to grids,and the convenient indexing process of time window are verified.
基金supported by the National Natural Science Foundation of China(60902045)the National High-Tech Research and Developmeent Program of China(863 Program)(2011AA01A105)
文摘In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.
基金supported by the National Natural Science Foundation of China(Grant No.41630754)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2017)CAS Key Technology Talent Program and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(2017490711)
文摘High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution.Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming,produces qualitative data,leads to ice mass loss,and leads to risks of potential secondary pollution.However,over the past several decades,preprocessing of ice cores has received less attention than the improvement of ice drilling,the analytical methodology of various indices,and the researches on the climatic and environmental significance of ice core records.Therefore,this papers reviews the development of the processing for ice cores including framework,design as well as materials,analyzes the technical advantages and disadvantages of the different systems.In the past,continuous flowanalysis(CFA)has been successfully applied to process the polar ice cores.However,it is not suitable for ice cores outside polar region because of high level of particles,the memory effect between samples,and the filtration before injection.Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores,which aggravates uncertainty in the measurements.The future developments of CFA are discussed in preprocessing,memory effect,challenge for brittle ice,coupling with real-time analysis and optimization of CFA in the field.Furthermore,non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core.This system also needs to be coupled with streamlined operation of packaging,coding,and stacking that can be implemented at high resolution and rate,avoiding manual intervention.At the same time,information of the longitudinal sections could be scanned andidentified,and then classified to obtain quantitative data.In addition,irregular ice volume and weight can also be obtained accurately.These improvements are recorded automatically via user-friendly interfaces.These innovations may be applied to other paleomedias with similar features and needs.
文摘Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morphology is to use construction ele- ment measure image morphology for solving understand problem.The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter.It gave the theo- ries of MMCNN dynamic extent and stable state.It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.
基金National Natural Science Foundation of China(No.61903291)Industrialization Project of Shaanxi Provincial Department of Education(No.18JC018)。
文摘A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanical systems.Firstly,the singular points of original signals are eliminated effectively by using the first-order difference method.Then the OVMD method is applied for signal modal decomposition.Furthermore,correlation analysis is conducted to determine the degree of correlation between each mode and the original signal,so as to accurately separate the real operating signal from noise signal.On the basis of theoretical analysis and simulation,an edge node pre-processing system for distributed electromechanical system is designed.Finally,by virtue of the signal-to-noise ratio(SNR)and root-mean-square error(RMSE)indicators,the signal pre-processing effect is evaluated.The experimental results show that the OVMD-based edge node pre-processing system can extract signals with different characteristics and improve the SNR of reconstructed signals.Due to its high fidelity and reliability,this system can also provide data quality assurance for subsequent system health monitoring and fault diagnosis.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
文摘The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or very large complicated structures, we must use the parallel algorithm with the aid of high-performance computers to solve complex problems. This paper introduces the implementation process having the parallel with sparse linear equations from the perspective of sparse linear equation group.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.