期刊文献+
共找到917篇文章
< 1 2 46 >
每页显示 20 50 100
Outliers Mining in Time Series Data Sets 被引量:3
1
作者 Zheng Binxiang,Du Xiuhua & Xi Yugeng Institute of Automation, Shanghai Jiaotong University,Shanghai 200030,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第1期93-97,共5页
In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be ma... In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be mapped as the points in k -dimensional space.For these points, a cluster-based algorithm is developed to mine the outliers from these points.The algorithm first partitions the input points into disjoint clusters and then prunes the clusters,through judgment that can not contain outliers.Our algorithm has been run in the electrical load time series of one steel enterprise and proved to be effective. 展开更多
关键词 data mining Time series outlier mining.
在线阅读 下载PDF
An Efficient Outlier Detection Approach on Weighted Data Stream Based on Minimal Rare Pattern Mining 被引量:2
2
作者 Saihua Cai Ruizhi Sun +2 位作者 Shangbo Hao Sicong Li Gang Yuan 《China Communications》 SCIE CSCD 2019年第10期83-99,共17页
The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional... The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional datasets. In addition, the traditional outlier detection method does not consider the frequency of subsets occurrence, thus, the detected outliers do not fit the definition of outliers (i.e., rarely appearing). The pattern mining-based outlier detection approaches have solved this problem, but the importance of each pattern is not taken into account in outlier detection process, so the detected outliers cannot truly reflect some actual situation. Aimed at these problems, a two-phase minimal weighted rare pattern mining-based outlier detection approach, called MWRPM-Outlier, is proposed to effectively detect outliers on the weight data stream. In particular, a method called MWRPM is proposed in the pattern mining phase to fast mine the minimal weighted rare patterns, and then two deviation factors are defined in outlier detection phase to measure the abnormal degree of each transaction on the weight data stream. Experimental results show that the proposed MWRPM-Outlier approach has excellent performance in outlier detection and MWRPM approach outperforms in weighted rare pattern mining. 展开更多
关键词 outlier detection WEIGHTED data STREAM MINIMAL WEIGHTED RARE pattern MINING deviation factors
在线阅读 下载PDF
An Intelligent Early Warning Method of Press-Assembly Quality Based on Outlier Data Detection and Linear Regression
3
作者 XUE Shanliang LI Chen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期597-606,共10页
Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to d... Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism. 展开更多
关键词 quality early warning outlier data detection linear regression local outlier factor based on area density and P weight(LAOPW) information entropy P weight
在线阅读 下载PDF
Top-k Outlier Detection from Uncertain Data 被引量:2
4
作者 Salman Ahmed Shaikh Hiroyuki Kitagawa 《International Journal of Automation and computing》 EI CSCD 2014年第2期128-142,共15页
Uncertain data are common due to the increasing usage of sensors, radio frequency identification(RFID), GPS and similar devices for data collection. The causes of uncertainty include limitations of measurements, inclu... Uncertain data are common due to the increasing usage of sensors, radio frequency identification(RFID), GPS and similar devices for data collection. The causes of uncertainty include limitations of measurements, inclusion of noise, inconsistent supply voltage and delay or loss of data in transfer. In order to manage, query or mine such data, data uncertainty needs to be considered. Hence,this paper studies the problem of top-k distance-based outlier detection from uncertain data objects. In this work, an uncertain object is modelled by a probability density function of a Gaussian distribution. The naive approach of distance-based outlier detection makes use of nested loop. This approach is very costly due to the expensive distance function between two uncertain objects. Therefore,a populated-cells list(PC-list) approach of outlier detection is proposed. Using the PC-list, the proposed top-k outlier detection algorithm needs to consider only a fraction of dataset objects and hence quickly identifies candidate objects for top-k outliers. Two approximate top-k outlier detection algorithms are presented to further increase the efficiency of the top-k outlier detection algorithm.An extensive empirical study on synthetic and real datasets is also presented to prove the accuracy, efficiency and scalability of the proposed algorithms. 展开更多
关键词 Top-k distance-based outlier detection uncertain data Gaussian uncertainty cell-based approach PC-list based approach
原文传递
Constructing Three-Dimension Space Graph for Outlier Detection Algorithms in Data Mining 被引量:1
5
作者 ZHANG Jing 1,2 , SUN Zhi-hui 1 1.Department of Computer Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China 2.Department of Electricity and Information Engineering, Jiangsu University, Zhenjiang 212001, Jiangsu, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期585-589,共5页
Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional sp... Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery. 展开更多
关键词 outlier DETECTION three-dimensional space graph data mining
在线阅读 下载PDF
Outlier Detection of Air Quality for Two Indian Urban Cities Using Functional Data Analysis
6
作者 Mohammad Ahmad Weihu Cheng +1 位作者 Zhao Xu Abdul Kalam 《Open Journal of Air Pollution》 2023年第3期79-91,共13页
Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities tu... Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities turn up dangerous contaminants in our surroundings. This study investigated two years’ worth of air quality and outlier detection data from two Indian cities. Studies on air pollution have used numerous types of methodologies, with various gases being seen as a vector whose components include gas concentration values for each observation per-formed. We use curves to represent the monthly average of daily gas emissions in our technique. The approach, which is based on functional depth, was used to find outliers in the city of Delhi and Kolkata’s gas emissions, and the outcomes were compared to those from the traditional method. In the evaluation and comparison of these models’ performances, the functional approach model studied well. 展开更多
关键词 Functional data Analysis outlierS Air Quality Gas Emission Classical Statistics
在线阅读 下载PDF
基于快速SVDD的无线传感器网络Outlier检测 被引量:8
7
作者 谢迎新 陈祥光 +2 位作者 余向明 岳彬 郭静 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第1期46-51,共6页
Outlier是基于无线传感器网络的数据收集应用中常见的数据故障类型,严重影响数据质量。本文提出一种基于快速SVDD的无线传感器网络Outlier检测方法,其基本思想是:首先利用快速SVDD算法获得包含正常样本的最小球形边界,然后通过该边界判... Outlier是基于无线传感器网络的数据收集应用中常见的数据故障类型,严重影响数据质量。本文提出一种基于快速SVDD的无线传感器网络Outlier检测方法,其基本思想是:首先利用快速SVDD算法获得包含正常样本的最小球形边界,然后通过该边界判断未知样本的类别,本法采用训练集约减策略和基于二阶逼近的SMO算法来加速SVDD的训练。基于合成数据和真实数据的仿真实验表明,该方法在确保分类精度的同时,运行速度快,内存开销小,适用于资源有限的无线传感器网络。 展开更多
关键词 无线传感器网络 outlier检测 SVDD 训练集约简 SMO算法
在线阅读 下载PDF
基于SIP-LOF算法的地形变仪器监测数据异常识别方法
8
作者 冯晓晗 杨江 《地震工程学报》 北大核心 2026年第1期242-250,共9页
为进一步检测地形变仪器的异常数据,提升仪器数据可用率及运维人员故障初步判别效率,文章提出一种基于数据挖掘的序列重要点-局部异常因子(SIP-LOF)算法。将地形变仪器的原始观测序列分割成子序列,通过计算序列中每个点的离群距离和局... 为进一步检测地形变仪器的异常数据,提升仪器数据可用率及运维人员故障初步判别效率,文章提出一种基于数据挖掘的序列重要点-局部异常因子(SIP-LOF)算法。将地形变仪器的原始观测序列分割成子序列,通过计算序列中每个点的离群距离和局部异常因子等,判断该数据点是否为离群点,进而量化每个数据点的异常程度,实现对前兆形变观测中自然干扰、设备故障、地震前兆等典型事件的异常检测。研究结果表明,相较于传统方法,该方法针对多个台站前兆数据的异常检测均有较好的检测效果,异常类型覆盖面更广;并且,当LOF限值为2.5时平均异常判定准确率最高,对前兆数据的处理工作具有积极意义。 展开更多
关键词 观测数据 典型事件 异常检测 局部异常因子
在线阅读 下载PDF
Outlier-DivideConquer:近似聚集查询中离群分治取样算法 被引量:1
9
作者 胡文瑜 孙志挥 张柏礼 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期524-531,共8页
取样是一种通用有效的近似技术,利用取样技术进行近似聚集查询处理是决策支持系统和数据挖掘实现技术中的常用方法.如何正确有效地给出近似查询结果并最小化近似查询误差是近似查询处理的关键和目标.在深入研究近似聚集查询取样方法的... 取样是一种通用有效的近似技术,利用取样技术进行近似聚集查询处理是决策支持系统和数据挖掘实现技术中的常用方法.如何正确有效地给出近似查询结果并最小化近似查询误差是近似查询处理的关键和目标.在深入研究近似聚集查询取样方法的基础上,本文提出了一个有误差确界且只需单遍扫描数据集的离群分治取样Outlier-DivideConquer算法,该算法在聚集属性内部存在高方差分布时能克服随机均匀取样局限,可显著降低近似查询误差,且执行效率优于同类算法.最后通过与传统均匀取样算法的实验比较验证了Outlier-DivideConquer算法的有效性和正确性. 展开更多
关键词 数据挖掘 决策支持 近似聚集查询 均匀取样 离群分治
在线阅读 下载PDF
基于改进的ISODATA的超球覆盖仿生模式分类算法 被引量:4
10
作者 刘莉萍 冯清贤 余志斌 《计算机应用研究》 CSCD 北大核心 2023年第3期689-695,共7页
现有仿生模式识别分类器难以解决含有多个聚集点、非线性和稀疏性样本的分类问题。因此,引入特征分类贡献度,提出了基于改进的迭代自组织数据分析(M-ISODATA)的超球覆盖仿生模式识别算法。首先引入马氏距离对自组织数据分析方法(ISODATA... 现有仿生模式识别分类器难以解决含有多个聚集点、非线性和稀疏性样本的分类问题。因此,引入特征分类贡献度,提出了基于改进的迭代自组织数据分析(M-ISODATA)的超球覆盖仿生模式识别算法。首先引入马氏距离对自组织数据分析方法(ISODATA)的欧氏距离替换,并引入熵权法对马氏距离进行加权以赋予各特征不同的贡献度;同时为了去除干扰样本点,引入改进的局部离群因子检测方法(M-LOF)对样本进行训练,减少了不同类别流形之间的重叠区域。再利用改进的自组织数据分析方法(M-ISODATA)对每类训练样本点动态聚类,寻找到同一类的多个小类覆盖区中心后,用超球进行该类的有效覆盖,并对落入重叠区域的测试样本点进行二次划分,实现测试样本的正确分类。最后在iris数据集上验证该算法的有效性,并将该算法应用于雷达辐射源信号的分类识别。实验结果表明,该算法具有很好的拒识、免重训能力,对于雷达信号的识别率能达到97.29%,相比于传统典型模式识别算法具有更好的识别能力。 展开更多
关键词 超球覆盖 加权马氏距离 局部离群因子 自组织数据分析 免重训
在线阅读 下载PDF
Risk pre-warning of tender evaluation for civil projects:an outlier detection model
11
作者 Cheng Tiexin1 Qi Xin1 Guo Tao2(1 College of Management, Tianjin Polytechnic University, Tianjin 300387, China)(2 College of Industrial and Commercial Administration, Tianjin Polytechnic University, Tianjin 300387, China) 《Journal of Southeast University(English Edition)》 EI CAS 2008年第S1期155-159,共5页
The marking scheme method removes the low scores of the contractor's attributes given by experts when the overall score is calculated, which may result in that a contractor with some latent risks will win the proj... The marking scheme method removes the low scores of the contractor's attributes given by experts when the overall score is calculated, which may result in that a contractor with some latent risks will win the project. In order to remedy the above defect of the marking scheme method, an outlier detection model, which is one mission of knowledge discovery in data, is established on the basis of the sum of similar coefficients. Then, the model is applied to the historical score data of tender evaluation for civil projects in Tianjin, China, according to which the outliers of the scores of the contractor's attributes can be detected and analyzed. Consequently, risk pre-warning can be carried out, and some advice to employers can be given to prevent some latent risks and help them improve the success rate of bidding projects. 展开更多
关键词 civil projects tender evaluation knowledge discovery in data outlierS
在线阅读 下载PDF
Anomalous Cell Detection with Kernel Density-Based Local Outlier Factor 被引量:2
12
作者 Miao Dandan Qin Xiaowei Wang Weidong 《China Communications》 SCIE CSCD 2015年第9期64-75,共12页
Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical ... Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting. 展开更多
关键词 data mining key performance indicators kernel density-based local outlier factor density perturbation anomalous cell detection
在线阅读 下载PDF
Identifying Extreme Rainfall Events Using Functional Outliers Detection Methods
13
作者 Mohanned Abduljabbar Hael Yongsheng Yuan 《Journal of Data Analysis and Information Processing》 2020年第4期282-294,共13页
Outlier detection techniques play a vital role in exploring unusual data of extreme events that have a critical effect considerably in the modeling and forecasting of functional data. The functional methods have an ef... Outlier detection techniques play a vital role in exploring unusual data of extreme events that have a critical effect considerably in the modeling and forecasting of functional data. The functional methods have an effective way of identifying outliers graphically, which might not be visible through the original data plot in classical analysis. This study’s main objective is to detect the extreme rainfall events using functional outliers detection methods depending on the depth and density functions. In order to identify the unusual events of rainfall variation over long time intervals, this work conducts based on the average monthly rainfall of the Taiz region from 1998 to 2019. Data were extracted from the Tropical Rainfall Measuring Mission and the analysis has been processed by R software. The approaches applied in this study involve rainbow plots, functional highest density region box-plot as well as functional bag-plot. According to the current results, the functional density box-plot method has proven effective in detecting outlier compared to the functional depth bag-plot method. In conclusion, the results of the current study showed that the rainfall over the Taiz region during the last two decades was influenced by the extreme events of years 1999, 2004, 2005, and 2009. 展开更多
关键词 Rainfall data outlier Detection Rainbow Plot Functional Bag-Plot Functional Box-Plot
在线阅读 下载PDF
A MapReduced-Based and Cell-Based Outlier Detection Algorithm
14
作者 ZHU Sunjing LI Jing +2 位作者 HUANG Jilin LUO Simin PENG Weiping 《Wuhan University Journal of Natural Sciences》 CAS 2014年第3期199-205,共7页
Outlier detection is a very important type of data mining,which is extensively used in application areas.The traditional cell-based outlier detection algorithm not only takes a large amount of time in processing massi... Outlier detection is a very important type of data mining,which is extensively used in application areas.The traditional cell-based outlier detection algorithm not only takes a large amount of time in processing massive data,but also uses lots of machine resources,which results in the imbalance of the machine load.This paper presents an algorithm of the MapReduce-based and cell-based outlier detection,combined with the single-layer perceptron,which achieves the parallelization of outlier detection.These experiments show that this improved algorithm is able to effectively improve the efficiency of the outlier detection as well as the accuracy. 展开更多
关键词 outlier MapReduce data mining cell massive data
原文传递
Outlier detection based on multi-dimensional clustering and local density
15
作者 SHOU Zhao-yu LI Meng-ya LI Si-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1299-1306,共8页
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl... Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments. 展开更多
关键词 data MINING outlier DETECTION outlier DETECTION method based on MULTI-DIMENSIONAL CLUSTERING and local density (ODBMCLD) algorithm deviation DEGREE
在线阅读 下载PDF
Improved Data Discrimination in Wireless Sensor Networks 被引量:1
16
作者 B. A. Sabarish S. Shanmugapriya 《Wireless Sensor Network》 2012年第4期117-119,共3页
In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental... In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental in nature, due to deployment of various applications in Wireless Sensor Networks, thereby leading to high power consumption in the network. For effectively processing the data and reducing the power consumption the discrimination of noisy, redundant and outlier data has to be performed. In this paper we focus on data discrimination done at node and cluster level employing Data Mining Techniques. We propose an algorithm to collect data values both at node and cluster level and finding the principal component using PCA techniques and removing outliers resulting in error free data. Finally a comparison is made with the Statistical and Bucket-width outlier detection algorithm where the efficiency is improved to an extent. 展开更多
关键词 Wireless Sensor Networks (WSN) data MINING CLUSTERING ANOMALY DETECTION outlier DETECTION
暂未订购
面向二分类问题的直觉模糊深度随机配置网络
17
作者 丁世飞 朱姜兰 +2 位作者 张成龙 郭丽丽 张健 《软件学报》 北大核心 2025年第10期4660-4670,共11页
深度随机配置网络(deep stochastic configuration network,DSCN)采取前馈学习方式,基于特有的监督机制随机分配节点参数,具有全局逼近性.但是,在实际场景下,数据采集过程中潜在的离群值和噪声,易对分类结果产生负面影响.为提高DSCN解... 深度随机配置网络(deep stochastic configuration network,DSCN)采取前馈学习方式,基于特有的监督机制随机分配节点参数,具有全局逼近性.但是,在实际场景下,数据采集过程中潜在的离群值和噪声,易对分类结果产生负面影响.为提高DSCN解决二分类问题的性能,基于DSCN引入直觉模糊数思想,提出了一种直觉模糊深度随机配置网络(intuitionistic fuzzy deep stochastic configuration network,IFDSCN).与标准DSCN不同,IFDSCN通过计算样本隶属度和非隶属度,为每个样本分配一个直觉模糊数,通过加权的方法来生成最优分类器,以克服噪声和异常值对数据分类的负面影响.在8个基准数据集上的实验结果表明,所提出的模型与直觉模糊孪生支持向量机(intuitionistic fuzzy twin support vector machine,IFTWSVM)、核岭回归(kernel ridge regression,KRR)、直觉模糊核岭回归(intuitionistic fuzzy kernel ridge regression,IFKRR)、随机函数向量链接神经网络(random vector functional link neural network,RVFL)和SCN等学习模型相比,IFDSCN具有更好的二分类性能. 展开更多
关键词 直觉模糊数 随机配置网络 二分类 数据噪声 神经网络
在线阅读 下载PDF
多源数据融合的焊接质量监测技术 被引量:2
18
作者 张发平 孙昊 +1 位作者 魏剑峰 宋紫阳 《北京理工大学学报》 北大核心 2025年第5期471-481,共11页
针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并... 针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并将这些特征值与焊接的熔池图像特征值结合,构成焊接质量的原始特征空间;然后采用线性判别方法,降维形成焊接信息的低维特征空间;最后,使用孤立森林法筛选邻域搜索空间,并将该邻域搜索空间中的焊接数据点划分为多个重叠子集.采用局部离群因子法对新数据点在多个重叠子集中进行邻域搜索,对焊接过程进行异常检测,该方法充分考虑了焊接质量数据的全局特征并且计算复杂度大为降低.最后,采用基于人工蜂群算法优化的概率神经网络进行焊接质量数据的精确细分和异常的精准识别,该方法增强了全局搜索能力,同时避免陷入局部最优.试验验证结果显示所提方法都焊接异常的检测精度可达97.44%,对综合焊接异常的识别精度可达96.03%,证明了方法的有效性. 展开更多
关键词 隐性焊接异常 多源数据 局部离群因子 概率神经网络 线性判别方法 人工蜂群算法
在线阅读 下载PDF
电驱动系统效率试验数据质量评估方法研究
19
作者 邹喜红 王晓丽 +4 位作者 袁冬梅 周擎 熊锋 周振 王万英 《重庆理工大学学报(自然科学)》 北大核心 2025年第11期30-38,共9页
针对电驱动系统效率试验产生的高维数据,提出了一种利用数据挖掘技术对电驱动系统效率试验数据进行预处理与质量评估的方法。基于此,首先搭建了电驱动效率试验台架,对数据进行采集,分析效率试验数据特征;其次,结合IQR和MAD思想,设计了... 针对电驱动系统效率试验产生的高维数据,提出了一种利用数据挖掘技术对电驱动系统效率试验数据进行预处理与质量评估的方法。基于此,首先搭建了电驱动效率试验台架,对数据进行采集,分析效率试验数据特征;其次,结合IQR和MAD思想,设计了基于概率分布的效率试验数据降噪法;之后,通过构建IPSO-DBSCAN模型和LOF-iForest模型对效率数据进行分簇,并对簇内和簇外的异常值进行检验,实现了异常值数据的识别;最后,构建了多维度的数据质量评估模型。结果表明,该方法实现了对电驱动系统效率试验数据的预处理和多维度的数据质量评估,提高了电驱动系统效率试验数据的准确性和可靠性。 展开更多
关键词 电驱动系统 试验数据 数据预处理 异常值检验 质量评估
在线阅读 下载PDF
A Study of Detection of Outliers for Working and Non-Working Days Air Quality in Kolkata, India: A Case Study
20
作者 Mohammad Ahmad Weihu Cheng +1 位作者 Zhao Xu Abdul Kalam 《Journal of Environmental Protection》 2023年第8期685-709,共22页
A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberran... A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberrant values or outliers due to the significant fluctuation of this sort of data, which is influenced by Climate change and the environment. With accelerating industrial expansion and rising population density in Kolkata City, air pollution is continuously rising. This study involves two phases, in the first phase imputation of missing values and second detection of outliers using Statistical Process Control (SPC), and Functional Data Analysis (FDA), studies to achieve the efficacy of the outlier identification methodology proposed with working days and Nonworking days of the variables NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>, which were used for a year in a row in Kolkata, India. The results show how the functional data approach outshines traditional outlier detection methods. The outcomes show that functional data analysis vibrates more than the other two approaches after imputation, and the suggested outlier detector is absolutely appropriate for the precise detection of outliers in highly variable data. 展开更多
关键词 Statistical Process Control Functional data Analysis Fuzzy C Means outlierS Air Quality
暂未订购
上一页 1 2 46 下一页 到第
使用帮助 返回顶部