In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be ma...In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be mapped as the points in k -dimensional space.For these points, a cluster-based algorithm is developed to mine the outliers from these points.The algorithm first partitions the input points into disjoint clusters and then prunes the clusters,through judgment that can not contain outliers.Our algorithm has been run in the electrical load time series of one steel enterprise and proved to be effective.展开更多
The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional...The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional datasets. In addition, the traditional outlier detection method does not consider the frequency of subsets occurrence, thus, the detected outliers do not fit the definition of outliers (i.e., rarely appearing). The pattern mining-based outlier detection approaches have solved this problem, but the importance of each pattern is not taken into account in outlier detection process, so the detected outliers cannot truly reflect some actual situation. Aimed at these problems, a two-phase minimal weighted rare pattern mining-based outlier detection approach, called MWRPM-Outlier, is proposed to effectively detect outliers on the weight data stream. In particular, a method called MWRPM is proposed in the pattern mining phase to fast mine the minimal weighted rare patterns, and then two deviation factors are defined in outlier detection phase to measure the abnormal degree of each transaction on the weight data stream. Experimental results show that the proposed MWRPM-Outlier approach has excellent performance in outlier detection and MWRPM approach outperforms in weighted rare pattern mining.展开更多
Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to d...Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism.展开更多
Uncertain data are common due to the increasing usage of sensors, radio frequency identification(RFID), GPS and similar devices for data collection. The causes of uncertainty include limitations of measurements, inclu...Uncertain data are common due to the increasing usage of sensors, radio frequency identification(RFID), GPS and similar devices for data collection. The causes of uncertainty include limitations of measurements, inclusion of noise, inconsistent supply voltage and delay or loss of data in transfer. In order to manage, query or mine such data, data uncertainty needs to be considered. Hence,this paper studies the problem of top-k distance-based outlier detection from uncertain data objects. In this work, an uncertain object is modelled by a probability density function of a Gaussian distribution. The naive approach of distance-based outlier detection makes use of nested loop. This approach is very costly due to the expensive distance function between two uncertain objects. Therefore,a populated-cells list(PC-list) approach of outlier detection is proposed. Using the PC-list, the proposed top-k outlier detection algorithm needs to consider only a fraction of dataset objects and hence quickly identifies candidate objects for top-k outliers. Two approximate top-k outlier detection algorithms are presented to further increase the efficiency of the top-k outlier detection algorithm.An extensive empirical study on synthetic and real datasets is also presented to prove the accuracy, efficiency and scalability of the proposed algorithms.展开更多
Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional sp...Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery.展开更多
Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities tu...Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities turn up dangerous contaminants in our surroundings. This study investigated two years’ worth of air quality and outlier detection data from two Indian cities. Studies on air pollution have used numerous types of methodologies, with various gases being seen as a vector whose components include gas concentration values for each observation per-formed. We use curves to represent the monthly average of daily gas emissions in our technique. The approach, which is based on functional depth, was used to find outliers in the city of Delhi and Kolkata’s gas emissions, and the outcomes were compared to those from the traditional method. In the evaluation and comparison of these models’ performances, the functional approach model studied well.展开更多
The marking scheme method removes the low scores of the contractor's attributes given by experts when the overall score is calculated, which may result in that a contractor with some latent risks will win the proj...The marking scheme method removes the low scores of the contractor's attributes given by experts when the overall score is calculated, which may result in that a contractor with some latent risks will win the project. In order to remedy the above defect of the marking scheme method, an outlier detection model, which is one mission of knowledge discovery in data, is established on the basis of the sum of similar coefficients. Then, the model is applied to the historical score data of tender evaluation for civil projects in Tianjin, China, according to which the outliers of the scores of the contractor's attributes can be detected and analyzed. Consequently, risk pre-warning can be carried out, and some advice to employers can be given to prevent some latent risks and help them improve the success rate of bidding projects.展开更多
Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical ...Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting.展开更多
Outlier detection techniques play a vital role in exploring unusual data of extreme events that have a critical effect considerably in the modeling and forecasting of functional data. The functional methods have an ef...Outlier detection techniques play a vital role in exploring unusual data of extreme events that have a critical effect considerably in the modeling and forecasting of functional data. The functional methods have an effective way of identifying outliers graphically, which might not be visible through the original data plot in classical analysis. This study’s main objective is to detect the extreme rainfall events using functional outliers detection methods depending on the depth and density functions. In order to identify the unusual events of rainfall variation over long time intervals, this work conducts based on the average monthly rainfall of the Taiz region from 1998 to 2019. Data were extracted from the Tropical Rainfall Measuring Mission and the analysis has been processed by R software. The approaches applied in this study involve rainbow plots, functional highest density region box-plot as well as functional bag-plot. According to the current results, the functional density box-plot method has proven effective in detecting outlier compared to the functional depth bag-plot method. In conclusion, the results of the current study showed that the rainfall over the Taiz region during the last two decades was influenced by the extreme events of years 1999, 2004, 2005, and 2009.展开更多
Outlier detection is a very important type of data mining,which is extensively used in application areas.The traditional cell-based outlier detection algorithm not only takes a large amount of time in processing massi...Outlier detection is a very important type of data mining,which is extensively used in application areas.The traditional cell-based outlier detection algorithm not only takes a large amount of time in processing massive data,but also uses lots of machine resources,which results in the imbalance of the machine load.This paper presents an algorithm of the MapReduce-based and cell-based outlier detection,combined with the single-layer perceptron,which achieves the parallelization of outlier detection.These experiments show that this improved algorithm is able to effectively improve the efficiency of the outlier detection as well as the accuracy.展开更多
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl...Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.展开更多
In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental...In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental in nature, due to deployment of various applications in Wireless Sensor Networks, thereby leading to high power consumption in the network. For effectively processing the data and reducing the power consumption the discrimination of noisy, redundant and outlier data has to be performed. In this paper we focus on data discrimination done at node and cluster level employing Data Mining Techniques. We propose an algorithm to collect data values both at node and cluster level and finding the principal component using PCA techniques and removing outliers resulting in error free data. Finally a comparison is made with the Statistical and Bucket-width outlier detection algorithm where the efficiency is improved to an extent.展开更多
A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberran...A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberrant values or outliers due to the significant fluctuation of this sort of data, which is influenced by Climate change and the environment. With accelerating industrial expansion and rising population density in Kolkata City, air pollution is continuously rising. This study involves two phases, in the first phase imputation of missing values and second detection of outliers using Statistical Process Control (SPC), and Functional Data Analysis (FDA), studies to achieve the efficacy of the outlier identification methodology proposed with working days and Nonworking days of the variables NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>, which were used for a year in a row in Kolkata, India. The results show how the functional data approach outshines traditional outlier detection methods. The outcomes show that functional data analysis vibrates more than the other two approaches after imputation, and the suggested outlier detector is absolutely appropriate for the precise detection of outliers in highly variable data.展开更多
文摘In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be mapped as the points in k -dimensional space.For these points, a cluster-based algorithm is developed to mine the outliers from these points.The algorithm first partitions the input points into disjoint clusters and then prunes the clusters,through judgment that can not contain outliers.Our algorithm has been run in the electrical load time series of one steel enterprise and proved to be effective.
基金supported by Fundamental Research Funds for the Central Universities (No. 2018XD004)
文摘The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional datasets. In addition, the traditional outlier detection method does not consider the frequency of subsets occurrence, thus, the detected outliers do not fit the definition of outliers (i.e., rarely appearing). The pattern mining-based outlier detection approaches have solved this problem, but the importance of each pattern is not taken into account in outlier detection process, so the detected outliers cannot truly reflect some actual situation. Aimed at these problems, a two-phase minimal weighted rare pattern mining-based outlier detection approach, called MWRPM-Outlier, is proposed to effectively detect outliers on the weight data stream. In particular, a method called MWRPM is proposed in the pattern mining phase to fast mine the minimal weighted rare patterns, and then two deviation factors are defined in outlier detection phase to measure the abnormal degree of each transaction on the weight data stream. Experimental results show that the proposed MWRPM-Outlier approach has excellent performance in outlier detection and MWRPM approach outperforms in weighted rare pattern mining.
文摘Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism.
基金supported by Grant-in-Aid for Scientific Research(A)(#24240015A)
文摘Uncertain data are common due to the increasing usage of sensors, radio frequency identification(RFID), GPS and similar devices for data collection. The causes of uncertainty include limitations of measurements, inclusion of noise, inconsistent supply voltage and delay or loss of data in transfer. In order to manage, query or mine such data, data uncertainty needs to be considered. Hence,this paper studies the problem of top-k distance-based outlier detection from uncertain data objects. In this work, an uncertain object is modelled by a probability density function of a Gaussian distribution. The naive approach of distance-based outlier detection makes use of nested loop. This approach is very costly due to the expensive distance function between two uncertain objects. Therefore,a populated-cells list(PC-list) approach of outlier detection is proposed. Using the PC-list, the proposed top-k outlier detection algorithm needs to consider only a fraction of dataset objects and hence quickly identifies candidate objects for top-k outliers. Two approximate top-k outlier detection algorithms are presented to further increase the efficiency of the top-k outlier detection algorithm.An extensive empirical study on synthetic and real datasets is also presented to prove the accuracy, efficiency and scalability of the proposed algorithms.
文摘Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery.
文摘Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities turn up dangerous contaminants in our surroundings. This study investigated two years’ worth of air quality and outlier detection data from two Indian cities. Studies on air pollution have used numerous types of methodologies, with various gases being seen as a vector whose components include gas concentration values for each observation per-formed. We use curves to represent the monthly average of daily gas emissions in our technique. The approach, which is based on functional depth, was used to find outliers in the city of Delhi and Kolkata’s gas emissions, and the outcomes were compared to those from the traditional method. In the evaluation and comparison of these models’ performances, the functional approach model studied well.
基金Project of Tianjin Water Resources Bureau(No.KY2007-09)
文摘The marking scheme method removes the low scores of the contractor's attributes given by experts when the overall score is calculated, which may result in that a contractor with some latent risks will win the project. In order to remedy the above defect of the marking scheme method, an outlier detection model, which is one mission of knowledge discovery in data, is established on the basis of the sum of similar coefficients. Then, the model is applied to the historical score data of tender evaluation for civil projects in Tianjin, China, according to which the outliers of the scores of the contractor's attributes can be detected and analyzed. Consequently, risk pre-warning can be carried out, and some advice to employers can be given to prevent some latent risks and help them improve the success rate of bidding projects.
基金supported by the National Basic Research Program of China (973 Program: 2013CB329004)
文摘Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting.
文摘Outlier detection techniques play a vital role in exploring unusual data of extreme events that have a critical effect considerably in the modeling and forecasting of functional data. The functional methods have an effective way of identifying outliers graphically, which might not be visible through the original data plot in classical analysis. This study’s main objective is to detect the extreme rainfall events using functional outliers detection methods depending on the depth and density functions. In order to identify the unusual events of rainfall variation over long time intervals, this work conducts based on the average monthly rainfall of the Taiz region from 1998 to 2019. Data were extracted from the Tropical Rainfall Measuring Mission and the analysis has been processed by R software. The approaches applied in this study involve rainbow plots, functional highest density region box-plot as well as functional bag-plot. According to the current results, the functional density box-plot method has proven effective in detecting outlier compared to the functional depth bag-plot method. In conclusion, the results of the current study showed that the rainfall over the Taiz region during the last two decades was influenced by the extreme events of years 1999, 2004, 2005, and 2009.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2012AA040910)
文摘Outlier detection is a very important type of data mining,which is extensively used in application areas.The traditional cell-based outlier detection algorithm not only takes a large amount of time in processing massive data,but also uses lots of machine resources,which results in the imbalance of the machine load.This paper presents an algorithm of the MapReduce-based and cell-based outlier detection,combined with the single-layer perceptron,which achieves the parallelization of outlier detection.These experiments show that this improved algorithm is able to effectively improve the efficiency of the outlier detection as well as the accuracy.
基金Project(61362021)supported by the National Natural Science Foundation of ChinaProject(2016GXNSFAA380149)supported by Natural Science Foundation of Guangxi Province,China+1 种基金Projects(2016YJCXB02,2017YJCX34)supported by Innovation Project of GUET Graduate Education,ChinaProject(2011KF11)supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education,China
文摘Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.
文摘In Wireless Sensors Networks, the computational power and storage capacity is limited. Wireless Sensor Networks are operated in low power batteries, mostly not rechargeable. The amount of data processed is incremental in nature, due to deployment of various applications in Wireless Sensor Networks, thereby leading to high power consumption in the network. For effectively processing the data and reducing the power consumption the discrimination of noisy, redundant and outlier data has to be performed. In this paper we focus on data discrimination done at node and cluster level employing Data Mining Techniques. We propose an algorithm to collect data values both at node and cluster level and finding the principal component using PCA techniques and removing outliers resulting in error free data. Finally a comparison is made with the Statistical and Bucket-width outlier detection algorithm where the efficiency is improved to an extent.
文摘A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberrant values or outliers due to the significant fluctuation of this sort of data, which is influenced by Climate change and the environment. With accelerating industrial expansion and rising population density in Kolkata City, air pollution is continuously rising. This study involves two phases, in the first phase imputation of missing values and second detection of outliers using Statistical Process Control (SPC), and Functional Data Analysis (FDA), studies to achieve the efficacy of the outlier identification methodology proposed with working days and Nonworking days of the variables NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>, which were used for a year in a row in Kolkata, India. The results show how the functional data approach outshines traditional outlier detection methods. The outcomes show that functional data analysis vibrates more than the other two approaches after imputation, and the suggested outlier detector is absolutely appropriate for the precise detection of outliers in highly variable data.