Alteration is regarded as significant information for mineral exploration. In this study, ETM+ remote sensing data are used for recognizing and extracting alteration zones in northwestern Yunnan (云南), China. The ...Alteration is regarded as significant information for mineral exploration. In this study, ETM+ remote sensing data are used for recognizing and extracting alteration zones in northwestern Yunnan (云南), China. The principal component analysis (PCA) of ETM+ bands 1, 4, 5, and 7 was employed for OH alteration extractions. The PCA of ETM+ bands 1, 3, 4, and 5 was used for extracting Fe^2+ (Fe^3+) alterations. Interfering factors, such as vegetation, snow, and shadows, were masked. Alteration components were defined in the principal components (PCs) by the contributions of their diagnostic spectral bands. The zones of alteration identified from remote sensing were analyzed in detail along with geological surveys and field verification. The results show that the OH^- alteration is a main indicator of K-feldspar, phyllic, and prophilized alterations. These alterations are closely related to porphyry copper deposits. The Fe^2+ (Fe^3+) alteration indicates pyritization, which is mainly related to hydrothermal or skarn type polymetallic deposits.展开更多
1 Introduction PCDs are generated in continental arcs in response to plate converging processes(subduction and collision)(Hou et al.,2009;Richards,2013).It is generally accepted that the formation of PCDs is associate...1 Introduction PCDs are generated in continental arcs in response to plate converging processes(subduction and collision)(Hou et al.,2009;Richards,2013).It is generally accepted that the formation of PCDs is associated with igneous activities either originating from lower crust or upper mantle,with contributions of crusts during the evolution of continental lithosphere.展开更多
The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and ma...The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and mapping information. The Obuasi Mine sample data with a lot of legacy issues were subjected to a robust validation process and integrated with mapping information to generate an accurate geological orebody model for mineral resource estimation in Block 8 Lower. Validation of the sample data focused on replacing missing collar coordinates, missing assays, and correcting magnetic declination that was used to convert the downhole surveys from true to magnetic, fix missing lithology and finally assign confidence numbers to all the sample data. The missing coordinates which were replaced ensured that the sample data plotted at their correct location in space as intended from the planning stage. Magnetic declination data, which was maintained constant throughout all the years even though it changes every year, was also corrected in the validation project. The corrected magnetic declination ensured that the drillholes were plotted on their accurate trajectory as per the planned azimuth and also reflected the true position of the intercepted mineralized fissure(s) which was previously not the case and marked a major blot in the modelling of the Obuasi orebody. The incorporation of mapped data with the validated sample data in the wireframes resulted in a better interpretation of the orebody. The updated mineral resource generated by domaining quartz from the sulphides and compared with the old resource showed that the sulphide tonnes in the old resource estimates were overestimated by 1% and the grade overestimated by 8.5%.展开更多
The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luan...The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.展开更多
The Nanling belt in South China has considerable resources of tungsten polymetallic commodities and is one of the most important metallogenic belts in the world. Data-driven weights-of-evidence (WofE) and fuzzy logi...The Nanling belt in South China has considerable resources of tungsten polymetallic commodities and is one of the most important metallogenic belts in the world. Data-driven weights-of-evidence (WofE) and fuzzy logic models are used to evaluate the tungsten polymetallic potential of the Nanling belt. Initially, seven ore-controlling factors derived from multi-source geospatial datasets (e.g., geological, geochemical, and geophysical) are used for data integration in the two models. Two mineral potential maps are generated that efficiently predicate the locations of the deposits. The WofE map predicate 81% of the deposits within 13.6% of the study area, whereas the fuzzy logic map predicate 81.5% of the deposits within 13% of the area. The predictive maps are syntheses of spatial association rules, which provide better understanding of those factors that control the distribution of mineralization and trigger eventual exploration work in new areas. Subsequently, in order to evaluate the success rate accuracy, the receiver operating characteristic curves and area under the curves (AUCs) for the two potential maps are constructed. The results show that the AUCs for the WofE and fuzzy logic models are 0.775 7 and 0.840 6, respectively. The higher AUC value for the fuzzy logic model implies that it delineate a greater number of favorable areas compared with the WorE model. Overall, the capabilities of both models for correctly classifying areas with existing mineral deposits are satisfactory.展开更多
This paper presents the aim and the design structure of the metallic mineral resources assessment and analysis system. This system adopts an integrated technique of data warehouse composed of affairs processing layer...This paper presents the aim and the design structure of the metallic mineral resources assessment and analysis system. This system adopts an integrated technique of data warehouse composed of affairs processing layer and analysis application layer. The affairs processing layer includes multiform databases (such as geological database, geophysical database, geochemical database), while the analysis application layer includes data warehouse, online analysis processing and data mining. This paper also presents in detail the data warehouse of the present system and the appropriate spatial analysis methods and models. Finally, this paper presents the prospect of the system.展开更多
The key to answering many compelling and complex questions in Earth,planetary,and life science lies in breaking down the barriers between scientific fields and harnessing the integrated,multi-disciplinary power of Ear...The key to answering many compelling and complex questions in Earth,planetary,and life science lies in breaking down the barriers between scientific fields and harnessing the integrated,multi-disciplinary power of Earth,planetary,and bioscience data resources.We have a unique opportunity to integrate large and rapidly expanding"big data"resources,to enlist powerful analytical and visualization methods,and to answer multi-disciplinary questions that cannot be addressed by one field alone.展开更多
This study is based on the analysis and interpretation of aeromagnetic data using version 8.4 of the Geosoft Oasis Montaj Software, to map the subsurface or deep geological structures that affected the geological form...This study is based on the analysis and interpretation of aeromagnetic data using version 8.4 of the Geosoft Oasis Montaj Software, to map the subsurface or deep geological structures that affected the geological formations of the Ngaoundere area. The use of the standard aeromagnetic methods made it possible to draw up the maps of the residual magnetic field reduced to the equator (RTE), the horizontal gradient (HG), the analytical signal (AS) and that of the Euler solutions (ED) to find the main magnetic facies corresponding to these structures. The geological formations of the studied area thus appear to be intensely fractured by a NE-SW (N45°E) and ENE-WSW (N70°E) main orientation fault system, the depth of which has been estimated by combining the three-analytical methods HG, AS and ED. Advanced magmatic map analysis revealed dikes associated with vertical faults in the studied area. The development of an interpretative geological map taking into account the basic geology, the deep faults, the identified dikes and the mineralization index made it possible to extract a correlation between geological structures and mineralization of the studied area. The 2.5D modelling of two magnetic profiles plotted on the reduced residual map at the equator was performed to approximate the geometry and depth of the dikes sector, which are potential sources of mineralization here.展开更多
Characterized by lithological diversity and rich mineral resources, Benshangul-Gumuz National Regional State located in Asosa Zones, Western Ethiopia has been investigated for geological mapping and morpho-structural ...Characterized by lithological diversity and rich mineral resources, Benshangul-Gumuz National Regional State located in Asosa Zones, Western Ethiopia has been investigated for geological mapping and morpho-structural lineaments extraction using PALSAR (Phased Array type L-band Synthetic Aperture Radar ) Fine Beam Single (FBS) L-HH polarization and Landsat-5 TM (Thematic Mapper ) datasets. These data were preprocessed to retrieve ground surface reflectance and backscatter coefficients. To overcome the geometry acquisition between the two sensors, they were geometrically and topographically rectified using ASTER-V2 DEM. Intensity-Hue-Saturation, directional filters and automatic lineaments extraction were applied on the datasets for lithological units’ discrimination and structural delimitation for potential mineral exploration. The obtained results showed good relationship among the topographic morphology, rock-substrate, structural variations properties, and drainage network. The spectral variations were easily associated with lithological units. Likewise, the morpho-structural information highlighted in the PALSAR image was visible without altering the radiometric integrity of the details in TM bands through the fusion process. Moreover, predominant lineaments directions trending NE-SW, NS, and NW-SE were identified. Results of this study highlighted the importance of the PALSAR FBS L-HH mode and TM data fusion to enhance geological features and lithological units for mineral exploration particularly in tropical zones.展开更多
Saraikistan (South Punjab and surrounding) area of Pakistan is located in the central Pakistan. This area represents Triassic-Jurassic to Recent sedimentary marine and terrestrial strata. Most of the Mesozoic and Earl...Saraikistan (South Punjab and surrounding) area of Pakistan is located in the central Pakistan. This area represents Triassic-Jurassic to Recent sedimentary marine and terrestrial strata. Most of the Mesozoic and Early Cenozoic are represented by marine strata with rare terrestrial deposits, while the Late Cenozoic is represented by continental fluvial deposits. This area hosts significant mineral deposits and their development can play a significant role in the development of Saraikistan region and ultimately for Pakistan. The data of recently discovered biotas from Cambrian to Miocene age are tabulated for quick view. Mesozoic biotas show a prominent paleobiogeographic link with Gondwana and Cenozoic show Eurasian. Phylogeny and hypodigm of Poripuchian titanosaurs from India and Pakistan are hinted at here.展开更多
基金supported by the project "Remote Sensing Alteration Abnormity Extraction from Geological Survey in Northwestern Yunnan, China" from China Geological Survey
文摘Alteration is regarded as significant information for mineral exploration. In this study, ETM+ remote sensing data are used for recognizing and extracting alteration zones in northwestern Yunnan (云南), China. The principal component analysis (PCA) of ETM+ bands 1, 4, 5, and 7 was employed for OH alteration extractions. The PCA of ETM+ bands 1, 3, 4, and 5 was used for extracting Fe^2+ (Fe^3+) alterations. Interfering factors, such as vegetation, snow, and shadows, were masked. Alteration components were defined in the principal components (PCs) by the contributions of their diagnostic spectral bands. The zones of alteration identified from remote sensing were analyzed in detail along with geological surveys and field verification. The results show that the OH^- alteration is a main indicator of K-feldspar, phyllic, and prophilized alterations. These alterations are closely related to porphyry copper deposits. The Fe^2+ (Fe^3+) alteration indicates pyritization, which is mainly related to hydrothermal or skarn type polymetallic deposits.
基金supported by the National Key R&D Program of China(Grant No.2016YFC0600501)the National Natural Science Foundation of China(NSFC)(Grant No.41430320).
文摘1 Introduction PCDs are generated in continental arcs in response to plate converging processes(subduction and collision)(Hou et al.,2009;Richards,2013).It is generally accepted that the formation of PCDs is associated with igneous activities either originating from lower crust or upper mantle,with contributions of crusts during the evolution of continental lithosphere.
文摘The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and mapping information. The Obuasi Mine sample data with a lot of legacy issues were subjected to a robust validation process and integrated with mapping information to generate an accurate geological orebody model for mineral resource estimation in Block 8 Lower. Validation of the sample data focused on replacing missing collar coordinates, missing assays, and correcting magnetic declination that was used to convert the downhole surveys from true to magnetic, fix missing lithology and finally assign confidence numbers to all the sample data. The missing coordinates which were replaced ensured that the sample data plotted at their correct location in space as intended from the planning stage. Magnetic declination data, which was maintained constant throughout all the years even though it changes every year, was also corrected in the validation project. The corrected magnetic declination ensured that the drillholes were plotted on their accurate trajectory as per the planned azimuth and also reflected the true position of the intercepted mineralized fissure(s) which was previously not the case and marked a major blot in the modelling of the Obuasi orebody. The incorporation of mapped data with the validated sample data in the wireframes resulted in a better interpretation of the orebody. The updated mineral resource generated by domaining quartz from the sulphides and compared with the old resource showed that the sulphide tonnes in the old resource estimates were overestimated by 1% and the grade overestimated by 8.5%.
文摘The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.
基金supported by the Basic Research and Public Service Special Fund Project from the Institute of Geophysical and Geochemical Exploration, CAGS (No. WHS201208)the Program of Integrated Prediction of Mineral Resources in Covered Areas (No. 1212011085468)the China Geological Survey (No. 201211022)
文摘The Nanling belt in South China has considerable resources of tungsten polymetallic commodities and is one of the most important metallogenic belts in the world. Data-driven weights-of-evidence (WofE) and fuzzy logic models are used to evaluate the tungsten polymetallic potential of the Nanling belt. Initially, seven ore-controlling factors derived from multi-source geospatial datasets (e.g., geological, geochemical, and geophysical) are used for data integration in the two models. Two mineral potential maps are generated that efficiently predicate the locations of the deposits. The WofE map predicate 81% of the deposits within 13.6% of the study area, whereas the fuzzy logic map predicate 81.5% of the deposits within 13% of the area. The predictive maps are syntheses of spatial association rules, which provide better understanding of those factors that control the distribution of mineralization and trigger eventual exploration work in new areas. Subsequently, in order to evaluate the success rate accuracy, the receiver operating characteristic curves and area under the curves (AUCs) for the two potential maps are constructed. The results show that the AUCs for the WofE and fuzzy logic models are 0.775 7 and 0.840 6, respectively. The higher AUC value for the fuzzy logic model implies that it delineate a greater number of favorable areas compared with the WorE model. Overall, the capabilities of both models for correctly classifying areas with existing mineral deposits are satisfactory.
基金The study is supported by the Ministry of Science and Technology of China( No.96-914 -0 5)
文摘This paper presents the aim and the design structure of the metallic mineral resources assessment and analysis system. This system adopts an integrated technique of data warehouse composed of affairs processing layer and analysis application layer. The affairs processing layer includes multiform databases (such as geological database, geophysical database, geochemical database), while the analysis application layer includes data warehouse, online analysis processing and data mining. This paper also presents in detail the data warehouse of the present system and the appropriate spatial analysis methods and models. Finally, this paper presents the prospect of the system.
基金supported by the W.M.Keck Foundation’s Deep-Time Data Infrastructure projectsupport by the Deep Carbon Observatory+1 种基金the Alfred P.Sloan Foundationa private foundation,and the Carnegie Institution for Science.
文摘The key to answering many compelling and complex questions in Earth,planetary,and life science lies in breaking down the barriers between scientific fields and harnessing the integrated,multi-disciplinary power of Earth,planetary,and bioscience data resources.We have a unique opportunity to integrate large and rapidly expanding"big data"resources,to enlist powerful analytical and visualization methods,and to answer multi-disciplinary questions that cannot be addressed by one field alone.
文摘This study is based on the analysis and interpretation of aeromagnetic data using version 8.4 of the Geosoft Oasis Montaj Software, to map the subsurface or deep geological structures that affected the geological formations of the Ngaoundere area. The use of the standard aeromagnetic methods made it possible to draw up the maps of the residual magnetic field reduced to the equator (RTE), the horizontal gradient (HG), the analytical signal (AS) and that of the Euler solutions (ED) to find the main magnetic facies corresponding to these structures. The geological formations of the studied area thus appear to be intensely fractured by a NE-SW (N45°E) and ENE-WSW (N70°E) main orientation fault system, the depth of which has been estimated by combining the three-analytical methods HG, AS and ED. Advanced magmatic map analysis revealed dikes associated with vertical faults in the studied area. The development of an interpretative geological map taking into account the basic geology, the deep faults, the identified dikes and the mineralization index made it possible to extract a correlation between geological structures and mineralization of the studied area. The 2.5D modelling of two magnetic profiles plotted on the reduced residual map at the equator was performed to approximate the geometry and depth of the dikes sector, which are potential sources of mineralization here.
文摘Characterized by lithological diversity and rich mineral resources, Benshangul-Gumuz National Regional State located in Asosa Zones, Western Ethiopia has been investigated for geological mapping and morpho-structural lineaments extraction using PALSAR (Phased Array type L-band Synthetic Aperture Radar ) Fine Beam Single (FBS) L-HH polarization and Landsat-5 TM (Thematic Mapper ) datasets. These data were preprocessed to retrieve ground surface reflectance and backscatter coefficients. To overcome the geometry acquisition between the two sensors, they were geometrically and topographically rectified using ASTER-V2 DEM. Intensity-Hue-Saturation, directional filters and automatic lineaments extraction were applied on the datasets for lithological units’ discrimination and structural delimitation for potential mineral exploration. The obtained results showed good relationship among the topographic morphology, rock-substrate, structural variations properties, and drainage network. The spectral variations were easily associated with lithological units. Likewise, the morpho-structural information highlighted in the PALSAR image was visible without altering the radiometric integrity of the details in TM bands through the fusion process. Moreover, predominant lineaments directions trending NE-SW, NS, and NW-SE were identified. Results of this study highlighted the importance of the PALSAR FBS L-HH mode and TM data fusion to enhance geological features and lithological units for mineral exploration particularly in tropical zones.
文摘Saraikistan (South Punjab and surrounding) area of Pakistan is located in the central Pakistan. This area represents Triassic-Jurassic to Recent sedimentary marine and terrestrial strata. Most of the Mesozoic and Early Cenozoic are represented by marine strata with rare terrestrial deposits, while the Late Cenozoic is represented by continental fluvial deposits. This area hosts significant mineral deposits and their development can play a significant role in the development of Saraikistan region and ultimately for Pakistan. The data of recently discovered biotas from Cambrian to Miocene age are tabulated for quick view. Mesozoic biotas show a prominent paleobiogeographic link with Gondwana and Cenozoic show Eurasian. Phylogeny and hypodigm of Poripuchian titanosaurs from India and Pakistan are hinted at here.