With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so ...With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so this reality drives the conversion of paper medical records to electronic medical records.Electronic medical records are the basis for establishing a smart hospital and an important guarantee for achieving medical intelligence,and the massive amount of electronic medical record data is also an important data set for conducting research in the medical field.However,electronic medical records contain a large amount of private patient information,which must be desensitized before they are used as open resources.Therefore,to solve the above problems,data masking for Chinese electronic medical records with named entity recognition is proposed in this paper.Firstly,the text is vectorized to satisfy the required format of the model input.Secondly,since the input sentences may have a long or short length and the relationship between sentences in context is not negligible.To this end,a neural network model for named entity recognition based on bidirectional long short-term memory(BiLSTM)with conditional random fields(CRF)is constructed.Finally,the data masking operation is performed based on the named entity recog-nition results,mainly using regular expression filtering encryption and principal component analysis(PCA)word vector compression and replacement.In addi-tion,comparison experiments with the hidden markov model(HMM)model,LSTM-CRF model,and BiLSTM model are conducted in this paper.The experi-mental results show that the method used in this paper achieves 92.72%Accuracy,92.30%Recall,and 92.51%F1_score,which has higher accuracy compared with other models.展开更多
We consider a series system of two independent and non-identical components which have different BurrⅫ distributed lifetime.The maximum likelihood and Bayes estimators of the parameters of the system's components ar...We consider a series system of two independent and non-identical components which have different BurrⅫ distributed lifetime.The maximum likelihood and Bayes estimators of the parameters of the system's components are obtained based on masked system life test data.The conclusion is that the Bayes estimates are better than the maximum likelihood estimates in the sense of having smaller mean squared errors.展开更多
Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering....Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering.Furthermore,a general maskedbased additive non-homogeneous Poisson process(NHPP) model was considered to analyze component reliability.However,the problem of masked-based additive model lies in the difficulty of estimating parameters.The maximum likelihood estimation procedure was derived to estimate parameters.Finally,a numerical example was given to illustrate the applicability of proposed model,and the immune particle swarm optimization(IPSO) algorithm was used in maximize log-likelihood function.展开更多
Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed tha...Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures.展开更多
遥感影像数据与地理信息系统(geographic information system,GIS)矢量数据的配准是遥感与GIS集成的基础。目前遥感影像与矢量数据的配准关键在于遥感影像特征的提取,而现有遥感影像特征提取方法存在特征提取不完整、配准失败和精度不...遥感影像数据与地理信息系统(geographic information system,GIS)矢量数据的配准是遥感与GIS集成的基础。目前遥感影像与矢量数据的配准关键在于遥感影像特征的提取,而现有遥感影像特征提取方法存在特征提取不完整、配准失败和精度不高等问题。由此提出了一种基于Mask R-CNN(region-based convolutional neural network)的遥感影像与矢量数据配准方法,首先,利用Mask R-CNN模型提取影像的道路交叉口作为影像控制点;然后,依据几何拓扑关系筛选矢量数据道路交叉口作为矢量控制点,再根据遥感影像与矢量数据控制点的欧氏距离确定同名控制点;最后,以同名控制点为基础实现遥感影像与矢量数据的配准。选取上海市矢量数据和高分二号影像数据进行配准实验,实验结果表明,所提方法鲁棒性强、精度高。展开更多
为了探究大兴安岭地表反照率对森林火灾的响应变化规律,以2003年“5·5”大兴安岭金河林业局森林火灾为例,基于全球陆表卫星数据集(Global Land Surface Satellite,GLASS)地表反照率与叶面积指数(leaf area index,LAI)数据对森林火...为了探究大兴安岭地表反照率对森林火灾的响应变化规律,以2003年“5·5”大兴安岭金河林业局森林火灾为例,基于全球陆表卫星数据集(Global Land Surface Satellite,GLASS)地表反照率与叶面积指数(leaf area index,LAI)数据对森林火灾发生后的地表反照率变化进行了分析。研究结果表明:①森林火灾发生后火烧迹地地表反照率短期(1 a内)降低,而在中长期(10 a)呈现显著的升高趋势(0.0012/a);②这种中长期的地表反照率升高趋势受同期气候变化和人类活动影响较小,而与森林火灾发生后的植被恢复过程密切相关,并且过火区域地表反照率升高与LAI增加具有较强的相关性(r=0.682(p<0.01));③植被的积雪掩模效应进一步导致积雪覆盖期的火烧迹地地表反照率呈现更为显著的升高趋势。研究结果可以加深对地表反照率时空变化规律的认识,更为全面地评价森林火灾在全球气候变化中的影响作用奠定了基础。展开更多
In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely d...In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely difficult or impossible to get specific information about the component that caused the system to fail.Unknown failure causes are instances in which the actual cause of systemfailure is unknown.On the other side,thanks to current advanced technology based on computers,automation,and simulation,products have become incredibly dependable and trustworthy,and as a result,obtaining failure data for testing such exceptionally reliable items have become a very costly and time-consuming procedure.Therefore,because of its capacity to produce rapid and adequate failure data in a short period of time,accelerated life testing(ALT)is the most utilized approach in the field of product reliability and life testing.Based on progressively hybrid censored(PrHC)data froma three-component parallel series hybrid system that failed to owe to unknown causes,this paper investigates a challenging problem of parameter estimation and reliability assessment under a step stress partially accelerated life-test(SSPALT).Failures of components are considered to follow a power linear hazard rate(PLHR),which can be used when the failure rate displays linear,decreasing,increasing or bathtub failure patterns.The Tempered random variable(TRV)model is considered to reflect the effect of the high stress level used to induce early failure data.The maximum likelihood estimation(MLE)approach is used to estimate the parameters of the PLHR distribution and the acceleration factor.A variance covariance matrix(VCM)is then obtained to construct the approximate confidence intervals(ACIs).In addition,studentized bootstrap confidence intervals(ST-B CIs)are also constructed and compared with ACIs in terms of their respective interval lengths(ILs).Moreover,a simulation study is conducted to demonstrate the performance of the estimation procedures and the methodology discussed in this paper.Finally,real failure data from the air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation technique.展开更多
基金This research was supported by the National Natural Science Foundation of China under Grant(No.42050102)the Postgraduate Education Reform Project of Jiangsu Province under Grant(No.SJCX22_0343)Also,this research was supported by Dou Wanchun Expert Workstation of Yunnan Province(No.202205AF150013).
文摘With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so this reality drives the conversion of paper medical records to electronic medical records.Electronic medical records are the basis for establishing a smart hospital and an important guarantee for achieving medical intelligence,and the massive amount of electronic medical record data is also an important data set for conducting research in the medical field.However,electronic medical records contain a large amount of private patient information,which must be desensitized before they are used as open resources.Therefore,to solve the above problems,data masking for Chinese electronic medical records with named entity recognition is proposed in this paper.Firstly,the text is vectorized to satisfy the required format of the model input.Secondly,since the input sentences may have a long or short length and the relationship between sentences in context is not negligible.To this end,a neural network model for named entity recognition based on bidirectional long short-term memory(BiLSTM)with conditional random fields(CRF)is constructed.Finally,the data masking operation is performed based on the named entity recog-nition results,mainly using regular expression filtering encryption and principal component analysis(PCA)word vector compression and replacement.In addi-tion,comparison experiments with the hidden markov model(HMM)model,LSTM-CRF model,and BiLSTM model are conducted in this paper.The experi-mental results show that the method used in this paper achieves 92.72%Accuracy,92.30%Recall,and 92.51%F1_score,which has higher accuracy compared with other models.
基金Supported by the National Natural Science Foundation of China(70471057)
文摘We consider a series system of two independent and non-identical components which have different BurrⅫ distributed lifetime.The maximum likelihood and Bayes estimators of the parameters of the system's components are obtained based on masked system life test data.The conclusion is that the Bayes estimates are better than the maximum likelihood estimates in the sense of having smaller mean squared errors.
基金Technology Foundation of Guizhou Province,China(No.QianKeHeJZi[2015]2064)Scientific Research Foundation for Advanced Talents in Guizhou Institue of Technology and Science,China(No.XJGC20150106)Joint Foundation of Guizhou Province,China(No.QianKeHeLHZi[2015]7105)
文摘Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering.Furthermore,a general maskedbased additive non-homogeneous Poisson process(NHPP) model was considered to analyze component reliability.However,the problem of masked-based additive model lies in the difficulty of estimating parameters.The maximum likelihood estimation procedure was derived to estimate parameters.Finally,a numerical example was given to illustrate the applicability of proposed model,and the immune particle swarm optimization(IPSO) algorithm was used in maximize log-likelihood function.
基金supported by the National Natural Science Foundation of China(71401134 71571144+1 种基金 71171164)the Program of International Cooperation and Exchanges in Science and Technology Funded by Shaanxi Province(2016KW-033)
文摘Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures.
文摘为了探究大兴安岭地表反照率对森林火灾的响应变化规律,以2003年“5·5”大兴安岭金河林业局森林火灾为例,基于全球陆表卫星数据集(Global Land Surface Satellite,GLASS)地表反照率与叶面积指数(leaf area index,LAI)数据对森林火灾发生后的地表反照率变化进行了分析。研究结果表明:①森林火灾发生后火烧迹地地表反照率短期(1 a内)降低,而在中长期(10 a)呈现显著的升高趋势(0.0012/a);②这种中长期的地表反照率升高趋势受同期气候变化和人类活动影响较小,而与森林火灾发生后的植被恢复过程密切相关,并且过火区域地表反照率升高与LAI增加具有较强的相关性(r=0.682(p<0.01));③植被的积雪掩模效应进一步导致积雪覆盖期的火烧迹地地表反照率呈现更为显著的升高趋势。研究结果可以加深对地表反照率时空变化规律的认识,更为全面地评价森林火灾在全球气候变化中的影响作用奠定了基础。
文摘In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely difficult or impossible to get specific information about the component that caused the system to fail.Unknown failure causes are instances in which the actual cause of systemfailure is unknown.On the other side,thanks to current advanced technology based on computers,automation,and simulation,products have become incredibly dependable and trustworthy,and as a result,obtaining failure data for testing such exceptionally reliable items have become a very costly and time-consuming procedure.Therefore,because of its capacity to produce rapid and adequate failure data in a short period of time,accelerated life testing(ALT)is the most utilized approach in the field of product reliability and life testing.Based on progressively hybrid censored(PrHC)data froma three-component parallel series hybrid system that failed to owe to unknown causes,this paper investigates a challenging problem of parameter estimation and reliability assessment under a step stress partially accelerated life-test(SSPALT).Failures of components are considered to follow a power linear hazard rate(PLHR),which can be used when the failure rate displays linear,decreasing,increasing or bathtub failure patterns.The Tempered random variable(TRV)model is considered to reflect the effect of the high stress level used to induce early failure data.The maximum likelihood estimation(MLE)approach is used to estimate the parameters of the PLHR distribution and the acceleration factor.A variance covariance matrix(VCM)is then obtained to construct the approximate confidence intervals(ACIs).In addition,studentized bootstrap confidence intervals(ST-B CIs)are also constructed and compared with ACIs in terms of their respective interval lengths(ILs).Moreover,a simulation study is conducted to demonstrate the performance of the estimation procedures and the methodology discussed in this paper.Finally,real failure data from the air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation technique.