期刊文献+
共找到918,570篇文章
< 1 2 250 >
每页显示 20 50 100
A Latency-Aware and Fault-Tolerant Framework for Resource Scheduling and Data Management in Fog-Enabled Smart City Transportation Systems
1
作者 Ibrar Afzal Noor ul Amin +1 位作者 Zulfiqar Ahmad Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期1377-1399,共23页
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ... Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem. 展开更多
关键词 Fog computing smart cities smart transportation data management fault tolerance resource scheduling
在线阅读 下载PDF
Cross-chain mapping blockchain:Scalable data management in massive IoT networks
2
作者 Wenjian Hu Yao Yu +3 位作者 Xin Hao Phee Lep Yeoh Lei Guo Yonghui Li 《Digital Communications and Networks》 2025年第4期1124-1139,共16页
We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting I... We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks. 展开更多
关键词 Blockchain Cross-chain mappings data management Internet of things Deep reinforcement learning
在线阅读 下载PDF
Dynamic Data Classification Strategy and Security Management in Higher Education: A Case Study of Wenzhou Medical University
3
作者 Chunyan Yang Feng Chen Jiahao He 《教育技术与创新》 2025年第1期1-10,共10页
In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and ... In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and constructs a higher educational data security management and control model centered on the integration of medical and educational data.By implementing a multi-dimensional strategy of dynamic classification,real-time authorization,and secure execution through educational data security levels,dynamic access control is applied to effectively enhance the security and controllability of educational data,providing a secure foundation for data sharing and openness. 展开更多
关键词 data classification strategy dynamic classification data security management
在线阅读 下载PDF
Strategies and Practices of Enterprise Human Resource Management in the Era of Big Data
4
作者 Wei Gao 《Proceedings of Business and Economic Studies》 2025年第5期104-109,共6页
With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation... With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation.In enterprise human resource management,big data technology also has a broad application space and important application value.To gain higher market competitiveness and comprehensively improve the quality and efficiency of human resource management,enterprises need to rely on big data technology for comprehensive reform and optimization,thereby building an efficient,fair,open,and scientific human resource management model.This paper analyzes the problems and changes of enterprise human resource management in the era of big data,and then puts forward effective strategies for enterprise human resource management based on the era of big data. 展开更多
关键词 Big data era ENTERPRISES Human resource management STRATEGIES
在线阅读 下载PDF
Research on Marketing Management Enabled by Big Data Technology
5
作者 Ying Xu 《Proceedings of Business and Economic Studies》 2025年第2期287-292,共6页
In the era of big data,data has gradually become an important asset of enterprises,and the application of big data technology has gradually become the key to the optimization of enterprise marketing management mode.En... In the era of big data,data has gradually become an important asset of enterprises,and the application of big data technology has gradually become the key to the optimization of enterprise marketing management mode.Enterprises take the initiative to meet the development trend of the times,rely on big data technology to effectively process and analyze data,innovate decision-making methods and operation models,and achieve efficient marketing and fine management,which is an important way to improve their market competitiveness.Therefore,the author first analyzes the empowering role of big data technology on enterprise marketing management,and then discusses the difficulties faced by enterprise marketing management in the era of big data,and finally puts forward targeted improvement strategies,aiming to provide a reference for enterprises to innovate and change the marketing management mode. 展开更多
关键词 Big data technology ENTERPRISE Marketing management
在线阅读 下载PDF
Intelligent Educational Administration Management System Based on Data Mining Technology
6
作者 Xiaofei Yang 《Journal of Contemporary Educational Research》 2025年第6期123-128,共6页
With the gradual acceleration of information construction in colleges and universities,digital campus and smart campus have gradually become important means for colleges and universities to scientifically manage the c... With the gradual acceleration of information construction in colleges and universities,digital campus and smart campus have gradually become important means for colleges and universities to scientifically manage the campus.They have been applied to teaching,scientific research,student management,and other fields,improving the quality and efficiency of management.This paper mainly studies the intelligent educational administration management system based on data mining technology.Firstly,this paper introduces the application process of data mining technology,and builds an intelligent educational administration management system based on data mining technology.Then,this paper optimizes the application of the Apriori algorithm in educational administration management through transaction compression and frequent sampling.Compared with the traditional Apriori algorithm,the optimized Apriori algorithm in this paper has a shorter execution time under the same minimum support. 展开更多
关键词 data mining Educational administration management System construction Apriori algorithm
在线阅读 下载PDF
Strengthening Biomedical Big Data Management and Unleashing the Value of Data Elements
7
作者 Wei Zhou Jing-Chen Zhang De-Pei Liu 《Chinese Medical Sciences Journal》 2025年第1期1-2,I0001,共3页
On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th Nation... On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities. 展开更多
关键词 health medical big dataissuing drug development precision medicine disease diagnosis development biomedical data personalized health management standardized app biomedical big data
暂未订购
Financial Data Security Management in the Era of Big Data
8
作者 Yanling Liu Yun Li 《Proceedings of Business and Economic Studies》 2025年第2期37-42,共6页
In the era of big data,the financial industry is undergoing profound changes.By integrating multiple data sources such as transaction records,customer interactions,market trends,and regulatory requirements,big data te... In the era of big data,the financial industry is undergoing profound changes.By integrating multiple data sources such as transaction records,customer interactions,market trends,and regulatory requirements,big data technology has significantly improved the decision-making efficiency,customer insight,and risk management capabilities of financial institutions.The financial industry has become a pioneer in the application of big data technology,which is widely used in scenarios such as fraud detection,risk management,customer service optimization,and smart transactions.However,financial data security management also faces many challenges,including data breaches,privacy protection,compliance requirements,the complexity of emerging technologies,and the balance between data access and security.This article explores the major challenges of financial data security management,coping strategies,and the evolution of the regulatory environment,and it looks ahead to future trends,highlighting the important role of artificial intelligence and machine learning in financial data security. 展开更多
关键词 Big data Artificial intelligence data security Privacy protection
在线阅读 下载PDF
Remote Diagnosis and Analysis of Rail Vehicle Status Based on Train Control Management System Data
9
作者 Qiang Zhang Feng Jiao +2 位作者 Fan Liu Mengqi Yan Xiaoyu Bai 《Journal of Electronic Research and Application》 2025年第5期100-110,共11页
This article focuses on the remote diagnosis and analysis of rail vehicle status based on the data of the Train Control Management System(TCMS).It first expounds on the importance of train diagnostic analysis and desi... This article focuses on the remote diagnosis and analysis of rail vehicle status based on the data of the Train Control Management System(TCMS).It first expounds on the importance of train diagnostic analysis and designs a unified TCMS data frame transmission format.Subsequently,a remote data transmission link using 4G signals and data processing methods is introduced.The advantages of remote diagnosis are analyzed,and common methods such as correlation analysis,fault diagnosis,and fault prediction are explained in detail.Then,challenges such as data security and the balance between diagnostic accuracy and real-time performance are discussed,along with development prospects in technological innovation,algorithm optimization,and application promotion.This research provides ideas for remote analysis and diagnosis based on TCMS data,contributing to the safe and efficient operation of rail vehicles. 展开更多
关键词 Rail vehicle TCMS data Remote diagnosis data processing Fault prediction
在线阅读 下载PDF
Profit Growth and Innovation: Application of Big Data Analysis Technology in Agricultural Economic Management
10
作者 Xiaolan TANG Yingzi HE +4 位作者 Biao CHEN Haitao JIANG Hubo JIANG Xinyan TAN Haiqin YE 《Asian Agricultural Research》 2025年第6期1-5,10,共6页
In this paper,the application of agricultural big data in agricultural economic management is deeply explored,and its potential in promoting profit growth and innovation is analyzed.However,challenges persist in data ... In this paper,the application of agricultural big data in agricultural economic management is deeply explored,and its potential in promoting profit growth and innovation is analyzed.However,challenges persist in data collection and integration,limitations of analytical technologies,talent development,team building,and policy support when applying agricultural big data.Effective application strategies are proposed,including data-driven precision agriculture practices,construction of data integration and management platforms,data security and privacy protection strategies,as well as long-term planning and development strategies for agricultural big data,to maximize its impact on agricultural economic management.Future advancements require collaborative efforts in technological innovation,talent cultivation,and policy support,to realize the extensive application of agricultural big data in agricultural economic management and ensure sustainable industrial development. 展开更多
关键词 Agricultural big data Precision agriculture data-DRIVEN data security and privacy
在线阅读 下载PDF
State-Owned Enterprises IPD R&D Management Optimization Using Data-Driven Decision-Making Models
11
作者 ZHAO Yao ZHOU Wei +1 位作者 DING Hui WANG Tingyong 《Chinese Business Review》 2025年第3期99-108,共10页
In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD... In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD),with its emphasis on cross-functional teamwork,concurrent engineering,and data-driven decision-making,has been widely recognized for enhancing R&D efficiency and product quality.However,the unique characteristics of SOEs pose challenges to the effective implementation of IPD.The advancement of big data and artificial intelligence technologies offers new opportunities for optimizing IPD R&D management through data-driven decision-making models.This paper constructs and validates a data-driven decision-making model tailored to the IPD R&D management of SOEs.By integrating data mining,machine learning,and other advanced analytical techniques,the model serves as a scientific and efficient decision-making tool.It aids SOEs in optimizing R&D resource allocation,shortening product development cycles,reducing R&D costs,and improving product quality and innovation.Moreover,this study contributes to a deeper theoretical understanding of the value of data-driven decision-making in the context of IPD. 展开更多
关键词 state-owned enterprises IPD R&D management data-driven decision-making R&D optimization innovation
在线阅读 下载PDF
Unveiling the prescription patterns and mechanisms of Chinese herbal compound patents in the management of acute appendicitis:A data mining investigation
12
作者 Yuewen Li Qinsheng Zhang Suqin Hu 《Journal of Chinese Pharmaceutical Sciences》 2025年第6期566-580,共15页
In the present study,data mining and network pharmacology were utilized to explore the principles and mechanisms of traditional Chinese medicine(TCM)in treating acute appendicitis.The goal was to provide a scientific ... In the present study,data mining and network pharmacology were utilized to explore the principles and mechanisms of traditional Chinese medicine(TCM)in treating acute appendicitis.The goal was to provide a scientific basis for clinical treatment and further research on this disease.First,we searched the National Patent Database for Chinese herbal compound prescriptions used to treat acute appendicitis.We then applied frequency analysis,character and taste meridian analysis,association rule analysis,and hierarchical cluster analysis to identify the patterns of TCM treatment for acute appendicitis,selecting key combinations of Chinese medicines.Next,we screened the main active components of these key TCM based on quality markers.Using databases such as SwissTargetPrediction,SymMap,ETCM,and STRING,we analyzed the pharmacological mechanisms of these key TCM in treating acute appendicitis.Key active components and targets were further verified through molecular docking.We identified a total of 129 patents involving 316 Chinese medicines,with 24 being frequently used.The results indicated that most Chinese herbs used for acute appendicitis were heat-clearing drugs,blood-activating and stasis-removing drugs,and purging drugs.The primary active ingredients of the Rhubarb-cortex moutan-flos lonicerae combination for treating acute appendicitis included Emodin,Paeonol,Physcion,Chlorogenic acid,Chrysophanol,Rhein acid,and Aloe-emodin.These ingredients targeted key proteins such as ALB,TP53,BCL2,STAT3,IL-6,and TNF,and were involved in cellular responses to lipopolysaccharides,cell composition,and various cytokine-mediated biological processes.They also interacted with signaling pathways like AGE-RAGE,TNF,IL-17,and FoxO.Based on patent data,this study analyzed medication patterns in the treatment of acute appendicitis,discussed the possible mechanisms of key TCM combinations,and provided a scientific basis and new perspectives for the diagnosis and treatment of the disease. 展开更多
关键词 Acute appendicitis data mining Rule of composition Hierarchical clustering Molecular docking
原文传递
Teaching Reform and Practice of Statistics Courses in Big Data Management and Applications Major in the Context of New Quality Productivity
13
作者 Tinghui Huang Junchao Dong Liang Min 《Journal of Contemporary Educational Research》 2025年第2期23-31,共9页
In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social developmen... In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social development.Consequently,many domestic universities have introduced majors or courses related to big data.Among these,the Big Data Management and Applications major stands out for its interdisciplinary approach and emphasis on practical skills.However,as an emerging field,it has not yet accumulated a robust foundation in teaching theory and practice.Current instructional practices face issues such as unclear training objectives,inconsistent teaching methods and course content,insufficient integration of practical components,and a shortage of qualified faculty-factors that hinder both the development of the major and the overall quality of education.Taking the statistics course within the Big Data Management and Applications major as an example,this paper examines the challenges faced by statistics education in the context of emerging productive forces and proposes corresponding improvement measures.By introducing innovative teaching concepts and strategies,the teaching system for professional courses is optimized,and authentic classroom scenarios are recreated through illustrative examples.Questionnaire surveys and statistical analyses of data collected before and after the teaching reforms indicate that the curriculum changes effectively enhance instructional outcomes,promote the development of the major,and improve the quality of talent cultivation. 展开更多
关键词 New quality productivity Big data Compound talents Statistics course Teaching examples
在线阅读 下载PDF
A Quarterly High RFM Mining Algorithm for Big Data Management
14
作者 Cuiwei Peng Jiahui Chen +1 位作者 Shicheng Wan Guotao Xu 《Computers, Materials & Continua》 SCIE EI 2024年第9期4341-4360,共20页
In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf ava... In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability. 展开更多
关键词 data mining recency pattern high-utility itemset RFM pattern mining on-shelf management
在线阅读 下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things 被引量:1
15
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism Multi-source heterogeneous data
在线阅读 下载PDF
Challenges to and Countermeasures for the Value Realization of Healthcare Data Elements in China 被引量:1
16
作者 Tianan Yang Wenhao Deng +3 位作者 Ran Liu Tianyu Wang Yuanyuan Dai Jianwei Deng 《Health Care Science》 2025年第3期225-228,共4页
As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and oper... As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3]. 展开更多
关键词 China healthcare data elements healthcare data management value realization
暂未订购
A Systematic Literature Review on Task Allocation and Performance Management Techniques in Cloud Data Center
17
作者 Nidhika Chauhan Navneet Kaur +5 位作者 Kamaljit Singh Saini Sahil Verma Abdulatif Alabdulatif Ruba Abu Khurma Maribel Garcia-Arenas Pedro A.Castillo 《Computer Systems Science & Engineering》 2024年第3期571-608,共38页
As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage p... As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature. 展开更多
关键词 Cloud computing data centre task allocation performance management resource utilization
在线阅读 下载PDF
The Influence of Social Media on College Choice among Undergraduates Majoring in Big Data Management and Application in China:Taking Guilin University of Electronic Technology as an Example
18
作者 Junchao Dong Joan P.Lazaro 《Journal of Contemporary Educational Research》 2024年第10期128-138,共11页
This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media... This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators. 展开更多
关键词 Social media Big data management and Application Undergraduate college choice Student decision-making behavior Chinese higher education
在线阅读 下载PDF
Exploration and Practice of Big Data Introductory Courses for Big Data Management and Application Majors
19
作者 Tinghui Huang Junchao Dong Liang Min 《Journal of Contemporary Educational Research》 2024年第2期131-137,共7页
As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by ... As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by everyone.To this end,we discuss some of our explorations and attempts in the construction and teaching process of big data courses for the major of big data management and application from the perspective of course planning,course implementation,and course summary.After interviews with students and feedback from questionnaires,students are highly satisfied with some of the teaching measures and programs currently adopted. 展开更多
关键词 Big data management and application “Introduction to Big data Teaching reform Curriculum exploration
在线阅读 下载PDF
The full lifecycle management of scientific data at Hefei Light Source soft X-ray microscopy station
20
作者 Haishan Yu Lei Cui +4 位作者 Zhen Zhang Guang Lin Xiaokang Sun DaDi Zhang Gongfa Liu 《中国科学技术大学学报》 CSCD 北大核心 2024年第11期2-7,1,66,共8页
Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As... Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As part of its on-going efforts to establish a centralized scientific data management platform,HLS is in the process of developing a test sys-tem that covers the entire lifecycle of scientific data,including data generation,acquisition,processing,analysis,and de-struction.However,the instruments used in the soft X-ray microscopy experimental station rely on commercial propriet-ary software for data acquisition and processing.We developed a semi-automatic data acquisition program to facilitate the integration of soft X-ray microscopy stations into a centralized scientific data management platform.Additionally,we cre-ated an online data processing platform to assist users in analyzing their scientific data.The system we developed and de-ployed meets the design requirements,successfully integrating the soft X-ray microscopy station into the full lifecycle management of scientific data. 展开更多
关键词 Hefei Light Source soft X-ray microscopy full lifecycle data acquisition data processing scientific data
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部