期刊文献+
共找到2,462篇文章
< 1 2 124 >
每页显示 20 50 100
Evaluating the Robustness of MDSS Maintenance Forecasts Using Connected Vehicle Data
1
作者 Gregory L. Brinster Jairaj Desai +5 位作者 Myles W. Overall Christopher Gartner Rahul Suryakant Sakhare Jijo K. Mathew Nick Evans Darcy Bullock 《Journal of Transportation Technologies》 2024年第4期549-569,共21页
The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connec... The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond. 展开更多
关键词 Weather forecasting Winter Weather Connected Vehicle data After-Action Report
在线阅读 下载PDF
A New Method for Forecasting the Life Test Data of Mechanical Products
2
作者 ZHANG Huai-liang, TAN Guanjun, QIU Xian-yan College of Mechanical and Electrical Engineering Central South University Changsha 410083, P R. China 《International Journal of Plant Engineering and Management》 2001年第2期57-64,共8页
The model for forecasting the test data on mechanical products is established in the application of the grey system theories. A new formula of the background value is introduced into the model. The result of an exampl... The model for forecasting the test data on mechanical products is established in the application of the grey system theories. A new formula of the background value is introduced into the model. The result of an example shows the method can reduce test expense and enhance the precision of forecasting. 展开更多
关键词 mechanical product life test data forecast grey system theory
在线阅读 下载PDF
Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data 被引量:4
3
作者 CHEN Rui RAO Zheng-hua LIAO Sheng-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2136-2148,共13页
An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited i... An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited in many regions. In this paper, on the basis of comprehensive literature review, we proposed a hybrid model based on the long-range alternative energy planning (LEAP) model to improve the accuracy of energy demand forecasting in these regions. By taking Hunan province, China as a typical case, the proposed hybrid model was applied to estimating the possible future energy demand and energy-saving potentials in different sectors. The structure of LEAP model was estimated by Sankey energy flow, and Leslie matrix and autoregressive integrated moving average (ARIMA) models were used to predict the population, industrial structure and transportation turnover, respectively. Monte-Carlo method was employed to evaluate the uncertainty of forecasted results. The results showed that the hybrid model combined with scenario analysis provided a relatively accurate forecast for the long-term energy demand in regions with limited statistical data, and the average standard error of probabilistic distribution in 2030 energy demand was as low as 0.15. The prediction results could provide supportive references to identify energy-saving potentials and energy development pathways. 展开更多
关键词 energy demand forecasting with limited data hybrid LEAP model ARIMA model Leslie matrix Monte-Carlo method
在线阅读 下载PDF
ANALYSIS OF THE EFFECT OF 3DVAR AND ENSRF DIRECT ASSIMILATION OF RADAR DATA ON THE FORECAST OF A HEAVY RAINFALL EVENT 被引量:3
4
作者 刘寅 何光鑫 +2 位作者 刘佳伟 赵虹 燕成玉 《Journal of Tropical Meteorology》 SCIE 2016年第3期413-425,共13页
The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produ... The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produced by the United States National Centers for Environmental Prediction using the Weather Research and Forecasting(WRF) model,the WRF model with a three-dimensional variational(3DVAR) data assimilation system and the WRF model with an ensemble square root filter(EnSRF) data assimilation system.In addition,the present study analyzes a Meiyu front heavy rainfall process that occurred in the Yangtze-Huaihe River Basin from July 4 to July 5,2003,through numerical simulation.The results show the following.(1) The assimilation of the radar radial velocity data can increase the perturbations in the low-altitude atmosphere over the heavy rainfall region,enhance the convective activities and reduce excessive simulated precipitation.(2) The 3DVAR assimilation method significantly adjusts the horizontal wind field.The assimilation of the reflectivity data improves the microphysical quantities and dynamic fields in the model.In addition,the assimilation of the radial velocity and reflectivity data can better adjust the wind fields and improve the intensity and location of the simulated radar echo bands.(3) The EnSRF assimilation method can assimilate more small-scale wind field information into the model.The assimilation of the reflectivity data alone can relatively accurately forecast the rainfall centers.In addition,the assimilation of the radial velocity and reflectivity data can improve the location of the simulated radar echo bands.(4) The use of the 3DVAR and EnSRF assimilation methods to assimilate the radar radial velocity and reflectivity data can improve the forecast of precipitation,rain-band areal coverage and the center location and intensity of precipitation. 展开更多
关键词 ASSIMILATION radar data HEAVY RAINFALL forecast numerical simulation
在线阅读 下载PDF
Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts 被引量:1
5
作者 Chaoqun MA Tijian WANG +1 位作者 Zengliang ZANG Zhijin LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第7期813-825,共13页
Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimila... Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation(DA) and model output statistics(MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here,a one-month air quality forecast with the Weather Research and Forecasting-Chemistry(WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational(3 DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3 DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3 DVar DA in improving the operational forecasting ability of WRF-Chem. 展开更多
关键词 data assimilation model output statistics WRF-Chem operational forecast
在线阅读 下载PDF
A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System:Dual-Resolution Implementation and Testing Results 被引量:8
6
作者 Yujie PAN Ming XUE +1 位作者 Kefeng ZHU Mingjun WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第5期518-530,共13页
A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh f... A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution(HR) deterministic background forecast with lower-resolution(LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation(GSI) 3D variational(3DVar)analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds. 展开更多
关键词 dual-resolution 3D ensemble variational data assimilation system Rapid Refresh forecasting system
在线阅读 下载PDF
Improvement in Background Error Covariances Using Ensemble Forecasts for Assimilation of High-Resolution Satellite Data
7
作者 Seung-Woo LEE Dong-Kyou LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期758-774,共17页
Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper di... Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated. 展开更多
关键词 3DVAR background error covariances retrieved satellite data assimilation ensemble forecasts.
在线阅读 下载PDF
IMPACT OF VERTICAL RESOLUTION, MODEL TOP AND DATA ASSIMILATION ON WEATHER FORECASTING——A CASE STUDY
8
作者 SHAO Min ZHANG Yu XU Jian-jun 《Journal of Tropical Meteorology》 SCIE 2020年第1期71-81,共11页
The impacts of stratospheric initial conditions and vertical resolution on the stratosphere by raising the model top,refining the vertical resolution,and the assimilation of operationally available observations,includ... The impacts of stratospheric initial conditions and vertical resolution on the stratosphere by raising the model top,refining the vertical resolution,and the assimilation of operationally available observations,including conventional and satellite observations,on continental U.S.winter short-range weather forecasting,were investigated in this study.The initial and predicted wind and temperature profiles were analyzed against conventional observations.Generally,the initial wind and temperature bias profiles were better adjusted when a higher model top and refined vertical resolution were used.Negative impacts were also observed in both the initial wind and temperature profiles,over the lower troposphere.Different from the results by only raising the model top,the assimilation of operationally available observations led to significant improvements in both the troposphere and stratosphere initial conditions when a higher top was used.Predictions made with the adjusted stratospheric initial conditions and refined vertical resolutions showed generally better forecasting skill.The major improvements caused by raising the model top with refined vertical resolution,as well as those caused by data assimilation,were in both cases located in the tropopause and lower stratosphere.Negative impacts were also observed in the predicted near surface wind and lower-tropospheric temperature.These negative impacts were related to the uncertainties caused by more stratospheric information,as well as to some physical processes.A case study shows that when we raise the model top,put more vertical layers in stratosphere and apply data assimilation,the precipitation scores can be slightly improved.However,more analysis is needed due to uncertainties brought by data assimilation. 展开更多
关键词 WRF model vertical resolution model top data assimilation weather forecast
在线阅读 下载PDF
The Group Method of Data Handling (GMDH) and Artificial Neural Networks (ANN)in Time-Series Forecasting of Rice Yield
9
作者 Nadira Mohamed Isa Shabri Ani Samsudin Ruhaidah 《材料科学与工程(中英文B版)》 2011年第3期378-387,共10页
关键词 时间序列预测模型 人工神经网络 GMDH 水稻产量 数据处理 ANN 多项式函数 双曲线
在线阅读 下载PDF
Forecasting Winning Bid Prices in an Online Auction Market - Data Mining Approaches 被引量:1
10
作者 KIM Hongil BAEK Seung 《Journal of Electronic Science and Technology of China》 2004年第3期6-11,共6页
To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural ne... To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural network and Bayesian network in building a forecasting model. This research empirically shows that, in forecasting winning bid prices on online auction, data mining techniques have shown better performance than traditional statistical analysis, such as logistic regression and multivariate regression. 展开更多
关键词 Bayesian network data mining neural network price forecasting
在线阅读 下载PDF
A New Economy Forecasting Method Based on Data Barycentre Forecasting Method
11
作者 Jilin Zhang Qun Zhang 《Chinese Business Review》 2005年第5期25-28,共4页
A new and useful method of technology economics, parameter estimation method, was presented in light of the stability of gravity center of object in this paper. This method could deal with the fitting and forecasting ... A new and useful method of technology economics, parameter estimation method, was presented in light of the stability of gravity center of object in this paper. This method could deal with the fitting and forecasting of economy volume and could greatly decrease the errors of the fitting and forecasting results. Moreover, the strict hypothetical conditions in least squares method were not necessary in the method presented in this paper, which overcame the shortcomings of least squares method and expanded the application of data barycentre method. Application to the steel consumption volume forecasting was presented in this paper. It was shown that the result of fitting and forecasting was satisfactory. From the comparison between data barycentre forecasting method and least squares method, we could conclude that the fitting and forecasting results using data barycentre method were more stable than those of using least squares regression forecasting method, and the computation of data barycentre forecasting method was simpler than that of least squares method. As a result, the data barycentre method was convenient to use in technical economy. 展开更多
关键词 data barycentre method parameter estimation small sample steel forecasting
在线阅读 下载PDF
Research on Forecast Technologyof Mine Gas Emission Based onFuzzy Data Mining(FDM)
12
作者 徐常凯 王耀才 王军威 《Journal of China University of Mining and Technology》 2004年第2期174-178,共5页
The safe production of coalmine can be further improved by forecasting the quantity of gas emission based on the real-time data and historical data which the gas monitoring system has saved. By making use of the advan... The safe production of coalmine can be further improved by forecasting the quantity of gas emission based on the real-time data and historical data which the gas monitoring system has saved. By making use of the advantages of data warehouse and data mining technology for processing large quantity of redundancy data, the method and its application of forecasting mine gas emission quantity based on FDM were studied. The constructing fuzzy resembling relation and clustering analysis were proposed, which the potential relationship inside the gas emission data may be found. The mode finds model and forecast model were presented, and the detailed approach to realize this forecast was also proposed, which have been applied to forecast the gas emission quantity efficiently. 展开更多
关键词 fuzzy data raining (FDM) gas emission forecast
在线阅读 下载PDF
基于Transformer模型的时序数据预测方法综述 被引量:13
13
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 Transformer模型
在线阅读 下载PDF
先天性巨结肠患儿术前血清IL-1β、I-FABP和PRDX1水平对于术后小肠结肠炎的预测价值研究
14
作者 张海生 门楠 李雪群 《临床小儿外科杂志》 北大核心 2025年第8期764-770,共7页
目的探究先天性巨结肠(Hirschsprung's disease, HD)患儿血清白细胞介素-1β(interleukin-1β, IL-1β)、小肠脂肪酸结合蛋白(intestinal fatty acid binding protein, I-FABP)及过氧化物氧化还原酶-1(peroxiredoxin-1, PRDX1)水平... 目的探究先天性巨结肠(Hirschsprung's disease, HD)患儿血清白细胞介素-1β(interleukin-1β, IL-1β)、小肠脂肪酸结合蛋白(intestinal fatty acid binding protein, I-FABP)及过氧化物氧化还原酶-1(peroxiredoxin-1, PRDX1)水平对于术后小肠结肠炎(Hirschsprung associated enterocolitis, HAEC)的预测价值。方法本研究为回顾性研究。选择2021年6月至2023年6月在唐山市妇幼保健院接受诊治的178例HD患儿作为研究对象, 根据术后是否发生HAEC分为HAEC组(52例)和非HAEC组(126例)。另外选择150例同期在本院体检的健康儿童作为对照组。采取酶联免疫吸附试验检测C反应蛋白(C-reactive protein, CRP)、肿瘤坏死因子-α(tumor necrosis factor-alpha, TNF-α)、IL-1β、I-FABP、PRDX1水平;采用Pearson和Spearman相关性分析IL-1β、I-FABP及PRDX1水平与病变痉挛段长度、肠炎史、术后伤口感染、术后肠梗阻以及CRP、TNF-α水平的相关性;采用ROC曲线分析IL-1β、I-FABP、PRDX1水平对于HD患儿术后HAEC的诊断价值, 采用Z检验比较曲线下面积(area under curve, AUC)的差异。结果与对照组相比, HD组IL-1β[(13.97±4.15)pg/mL比(8.74±2.73)pg/mL]、I-FABP[(98.27±31.96)pg/mL比(56.24±18.12)pg/mL]、PRDX1[(24.07±7.65)μg/L比(16.53±5.24)μg/L]水平较高(P<0.05);与非HAEC组相比, HAEC组病变痉挛段长度(42.31%比24.60%), 肠炎史(48.08%比30.16%)、术后伤口感染(9.62%比1.59%)及术后肠梗阻(11.54%比1.59%)占比, 血清CRP[(25.67±7.25)pg/mL比(18.34±5.64)pg/mL]、TNF-α[(21.87±6.73)pg/mL比(15.28±4.67)pg/mL]、L-1β[(17.57±5.62)pg/mL比(12.48±3.84)pg/mL]、I-FABP[(124.72±36.57)pg/mL比(87.35±28.63)pg/mL]、PRDX1[(30.38±9.65)μg/L比(21.47±6.73)μg/L]水平均较高(P<0.05);HAEC组IL-1β、I-FABP、PRDX1水平与患儿病变痉挛段长度(r=0.421、0.423、0.408)、肠炎史(r=0.417、0.426、0.415)、术后伤口感染(r=0.402、0.425、0.414)、术后肠梗阻(r=0.432、0.428、0.434)、CRP(r=0.411、0.416、0.415)以及TNF-α(r=0.409、0.403、0.407)水平呈正相关(P<0.05);血清IL-1β、I-FABP、PRDX1单独诊断HD患儿术后HAEC的AUC分别为0.811(95%CI:0.746~0.866)、0.803(95%CI:0.737~0.859)、0.816(95%CI:0.752~0.870), 联合诊断的AUC为0.946(95%CI:0.902~0.974), 优于各自单独诊断(Z_(三者联合-IL-1β)=4.170、Z_(三者联合-I-FABP)=4.602、Z_(三者联合-PRDX1)=3.487, P<0.05)。结论与健康儿童相比, HD患儿血清IL-1β、I-FABP、PRDX1水平升高。HD患儿术前血清IL-1β、I-FABP、PRDX1水平越高, 预示其术后发生HAEC的风险越大。与单独诊断相比, IL-1β、I-FABP、PRDX1联合诊断HD患儿术后HAEC具有较高的临床指导意义。 展开更多
关键词 HIRSCHSPRUNG病 小肠结肠炎 白细胞介素1 脂肪酸结合蛋白质类 小肠 氧化还原酶类 过氧化物酶类 数据相关性 预测
暂未订购
强对流雷暴和闪电的探测、机理及预报
15
作者 郄秀书 刘冬霞 +3 位作者 蒋如斌 郑栋 底绍轩 陈志雄 《气象学报》 北大核心 2025年第3期833-854,共22页
雷暴是产生闪电的强对流天气系统,产生大量闪电的雷暴可导致多种灾害性天气。近10年来,高时\空分辨率闪电探测技术的发展,不仅使雷电的发展传输特征和机理、物理效应等方面取得了突破性进展,而且与双偏振多普勒天气雷达、高分辨率数值... 雷暴是产生闪电的强对流天气系统,产生大量闪电的雷暴可导致多种灾害性天气。近10年来,高时\空分辨率闪电探测技术的发展,不仅使雷电的发展传输特征和机理、物理效应等方面取得了突破性进展,而且与双偏振多普勒天气雷达、高分辨率数值模式结合,提升了对雷暴云动力-微物理-电过程及其相互关系,以及雷暴云电荷结构的科学认识,促进了雷电预报系统和面向数值预报模式的闪电资料同化方案的建立。从4方面对近10年中国在强对流雷暴和闪电探测、机理和预报领域的主要研究进展进行回顾,包括通道可分辨的高精度闪电三维定位技术及应用,不同类型雷暴系统中的闪电活动特征及其与云动力、微物理过程的关系,雷暴云电荷结构的观测和数值模拟,以及闪电预报与面向数值预报模式的闪电资料同化等,并对相关研究的未来发展进行了展望。 展开更多
关键词 高精度闪电定位技术 闪电物理和机制 雷暴电荷结构 闪电预报 雷暴预报的闪电资料同化
在线阅读 下载PDF
基于组合模型的风洞试验六元力预测
16
作者 宋佳音 张林 周宏威 《自动化技术与应用》 2025年第9期6-11,共6页
风洞试验对于试验设备和场地具有较高要求,且耗时长,成本高,数据获取困难。为此提出基于组合模型对风洞试验六元力进行预测。首先利用SMOTE过采样方法对风洞试验小样本数据进行数据扩充,然后采用极限梯度提升算法(extreme gradient boos... 风洞试验对于试验设备和场地具有较高要求,且耗时长,成本高,数据获取困难。为此提出基于组合模型对风洞试验六元力进行预测。首先利用SMOTE过采样方法对风洞试验小样本数据进行数据扩充,然后采用极限梯度提升算法(extreme gradient boosting,XGBoost)、K最近邻算法(k-nearest neighbor,KNN)和多层感知器(multilayer perceptron,MLP)3个单一模型建立XGBoost-KNN-MLP组合模型。为克服权重带来的影响,采用人工免疫算法(artificial immune algorithm,AIA)对组合模型的权重系数进行优化建立AIA-XKM组合预测模型。预测效果以平均绝对误差(mean absolute error,MAE)、均方误差(mean square error,MSE)、决定系数(r-square,R2)和均方根误差(root mean squared error,RMSE)为评价指标。并与经典算法XGBoost、KNN、MLP、SVM、RNN构建的预测模型进行对比。实验结果表明,所提出的AIA-XKM组合预测模型在六元力预测中弥补了单一模型存在的不足,在预测精度和泛化能力中表现出更高性能。将该预测模型应用于风洞试验前,能够提前预测试验的输出数值,判断试验的可行性与准确性,提高风洞试验的成功率,减少无用试验。 展开更多
关键词 数据预测 小样本 组合模型 风洞试验
在线阅读 下载PDF
新型往返平漂式探空资料对长江中下游数值预报质量的影响
17
作者 张鑫 王秋萍 +3 位作者 马旭林 张旭鹏 成巍 夏元彩 《大气科学》 北大核心 2025年第1期245-256,共12页
对于新型观测系统的建立,准确客观地评估其性能对系统的完善和发展具有重要的意义。我国新一代往返平漂式探空系统(Round-trip Drifting Sounding System,RDSS)创新性地突破了传统探空观测模式,通过一次释放实现“上升—平漂—下降”三... 对于新型观测系统的建立,准确客观地评估其性能对系统的完善和发展具有重要的意义。我国新一代往返平漂式探空系统(Round-trip Drifting Sounding System,RDSS)创新性地突破了传统探空观测模式,通过一次释放实现“上升—平漂—下降”三段式观测,拓展了现有探空观测的能力和范围。本文利用基于伴随模式的预报敏感性方法(Forecast Sensitivity to Observations,FSO),研究了长江中下游目标区数值预报质量对新型探空观测资料的敏感性。结果表明:试验时段内同化常规观测资料均能够不同程度地减小预报误差,提高预报质量,其中风场和温度观测的贡献最为显著。新型探空试验资料对长江中下游目标区预报具有显著正贡献,71.4%时次的预报误差有了进一步的减小。经向风和湿度观测对预报质量的改善最为明显。新型探空风场观测对预报误差的贡献具有明显的空间差异,预报误差减小的大值区主要分布在试验站本站及其附近区域;整层新型探空风场、温度、湿度观测对预报质量的正贡献比较显著,仅对流层中低层的纬向风观测对预报质量呈现弱的负贡献。 展开更多
关键词 数值预报 资料同化 预报敏感性 往返平漂式探空系统
在线阅读 下载PDF
物理引导数据驱动方法研究综述及其在水文模型构建中的应用与展望 被引量:1
18
作者 冯钧 邵萍萍 +1 位作者 张继茹 刘学毅 《河海大学学报(自然科学版)》 北大核心 2025年第5期1-9,共9页
为探索物理机理模型与数据驱动模型的融合方法,分析了现有物理引导融合驱动方法的实现方式,对基于理论引导数据科学(TGDS)的物理引导融合驱动方法在不同领域的研究现状进行了分类与总结,并提出了物理引导反馈融合驱动方法和物理引导编... 为探索物理机理模型与数据驱动模型的融合方法,分析了现有物理引导融合驱动方法的实现方式,对基于理论引导数据科学(TGDS)的物理引导融合驱动方法在不同领域的研究现状进行了分类与总结,并提出了物理引导反馈融合驱动方法和物理引导编码融合驱动方法这种新的分类方式,结合水文建模领域的特点,详细阐述了物理引导融合驱动方法在水文模型构建中的挑战,并对未来的研究方向进行了展望。认为基于TGDS的物理引导融合驱动方法,能够增强预测结果的物理一致性,减少预测误差的累积,提高模型的可解释性,同时能为洪水预报水文模型的改进提供可行路径,既能减少机理模型因概化过程带来的预测精度不高的问题,又能有效改善由于数据驱动模型对样本的过度依赖导致的可解释性低的问题;但该方法在应用中面临着计算能力有限、提取多源数据特征不够准确、参数调整不够灵活的问题,因此在未来研究中可以结合可微分建模或者采用大模型结合领域知识图谱的方法,进一步探索洪水时序预测建模研究,以更好地应对复杂环境下的洪水预报需求。 展开更多
关键词 物理引导数据驱动 融合驱动 洪水预报 人工智能
在线阅读 下载PDF
基于卷积-长短记忆神经网络的页岩气井短期产量预测与概率性评价 被引量:1
19
作者 郭建春 任文希 +3 位作者 曾凡辉 刘彧轩 段又菁 罗扬 《钻采工艺》 北大核心 2025年第1期130-137,共8页
页岩气赋存方式多样、渗流机理复杂,气井生产制度多变,准确预测页岩气井产量难度大。针对这一问题,文章基于数据驱动的思想,对历史生产数据进行了预处理,建立了由产量、油嘴尺寸、生产时间和关井时间组成的多维时间序列,结合卷积神经网... 页岩气赋存方式多样、渗流机理复杂,气井生产制度多变,准确预测页岩气井产量难度大。针对这一问题,文章基于数据驱动的思想,对历史生产数据进行了预处理,建立了由产量、油嘴尺寸、生产时间和关井时间组成的多维时间序列,结合卷积神经网络(CNN)和长短记忆神经网络(LSTM),基于混合式深度学习架构,建立了基于卷积-长短记忆神经网络的页岩气井短期产量预测模型(CNN-LSTM)。CNN-LSTM采用CNN提取高维特征之间的交互作用信息,并利用LSTM提取这些特征的时序信息,实现了交互作用信息和时序信息的融合。生产数据测试表明:CNN-LSTM考虑了生产制度的影响,因此其产量预测精度高于单变量LSTM和多变量LSTM。进一步发展了基于核密度估计理论的产量概率性预测方法,实现了产量预测结果的不确定分析,获得了未来气井产量的变化范围。研究成果有望为页岩气井生产动态分析、产量预测和生产管理提供支撑。 展开更多
关键词 页岩气井 产量预测 神经网络 不确定分析 数据驱动
在线阅读 下载PDF
基于数据分解的多区域个性化联邦负荷预测方法 被引量:1
20
作者 焦润海 褚佳杰 +1 位作者 李俊良 张炜杰 《中国电机工程学报》 北大核心 2025年第5期1691-1703,I0005,共14页
开放电力市场中的小规模主体由于缺乏数据导致负荷预测准确度低,联邦学习在保证数据隐私前提下利用多方数据训练得到考虑多方共性的全局模型,但该模型由于忽略了个性特征无法保证在每个参与方都达到最优预测效果。为此,提出一种基于数... 开放电力市场中的小规模主体由于缺乏数据导致负荷预测准确度低,联邦学习在保证数据隐私前提下利用多方数据训练得到考虑多方共性的全局模型,但该模型由于忽略了个性特征无法保证在每个参与方都达到最优预测效果。为此,提出一种基于数据分解的多区域个性化联邦负荷预测方法(personalized federated multi-region load forecasting method based on data decomposition,pFedD)。首先,对原始负荷数据序列分解得到包含不同数据特征的本征模态函数(intrinsic mode functions,IMF);其次,中央服务器根据信号过零率将所有IMF分为高频、低频和趋势分量;最后,根据分量相关性分析,客户端将高频和趋势分量作为个性化分量进行本地模型训练,将低频分量作为联邦分量参与全局模型训练。在中国北方10个地区的真实负荷数据上进行实验,结果表明,pFedD的平均绝对百分比误差(mean absolute percentage error,MAPE)为3.09%,比经典的联邦平均(federated averaging,FedAvg)方法降低了1.67%。 展开更多
关键词 负荷预测 联邦学习 个性化 数据分解 分量选择
原文传递
上一页 1 2 124 下一页 到第
使用帮助 返回顶部