期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Analyzing Electricity Consumption via Data Mining 被引量:1
1
作者 LIU Jinshuo LAN Huiying +2 位作者 FU Yizhen WU Hui LI Peng 《Wuhan University Journal of Natural Sciences》 CAS 2012年第2期121-125,共5页
This paper proposes a model to analyze the massive data of electricity.Feature subset is determined by the correla-tion-based feature selection and the data-driven methods.The attribute season can be classified succes... This paper proposes a model to analyze the massive data of electricity.Feature subset is determined by the correla-tion-based feature selection and the data-driven methods.The attribute season can be classified successfully through five classi-fiers using the selected feature subset,and the best model can be determined further.The effects on analyzing electricity consump-tion of the other three attributes,including months,businesses,and meters,can be estimated using the chosen model.The data used for the project is provided by Beijing Power Supply Bureau.We use WEKA as the machine learning tool.The models we built are promising for electricity scheduling and power theft detection. 展开更多
关键词 feature selection multi-classification prediction model data analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部