期刊文献+
共找到4,429篇文章
< 1 2 222 >
每页显示 20 50 100
Research on Library Data Governance for Data Factorization
1
作者 Yan Jiang 《Journal of Electronic Research and Application》 2025年第6期159-166,共8页
Data factors are becoming the core driving force in the intelligent transformation of libraries.Based on a systematic review of the progress in data governance practices in libraries both domestically and internationa... Data factors are becoming the core driving force in the intelligent transformation of libraries.Based on a systematic review of the progress in data governance practices in libraries both domestically and internationally,this study delves into the mechanism by which data governance promotes data factorization and proposes implementation paths for data governance oriented toward data factorization.The aim is to facilitate the intelligent transformation and high-quality development of libraries. 展开更多
关键词 data factorization LIBRARIES data governance Mechanism of action Practical paths
在线阅读 下载PDF
Economical Optimization of Grid Power Factor Using Predictive Data 被引量:1
2
作者 Chaojiong Huang Jason Gu +2 位作者 Haiying Liu Yuansheng Lu Jun Luo 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期258-267,共10页
We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an ... We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method. 展开更多
关键词 GRID OPTIMIZATION GridLAB-D inverter power factor PREDICTIVE data control SHUNT CAPACITOR
在线阅读 下载PDF
Agricultural Total Factor Productivity and Income Gap between Urban and Rural Residents--An Empirical Study Based on Provincial Panel Data
3
作者 Chen CHEN 《Asian Agricultural Research》 2018年第11期9-13,共5页
Taking the relevant data of 27 provinces in China during 2013 and 2017 as samples,this paper firstly measured the agricultural total factor productivity( TFP) using Malmquist index method. Then,it built the panel data... Taking the relevant data of 27 provinces in China during 2013 and 2017 as samples,this paper firstly measured the agricultural total factor productivity( TFP) using Malmquist index method. Then,it built the panel data model,and empirically tested the impacts of agricultural TFP on the income gap between urban and rural residents. The results show that the improvement in agricultural TFP can promote the narrowing of the income gap between urban and rural residents,and the factors such as urbanization level and industrial structure also have significant impacts on the income gap between urban and rural residents. On the basis of these,it came up with recommendations,including increasing agricultural human capital investment and establishing agricultural production research institutions. 展开更多
关键词 农业 生产率 发展现状 区域经济
在线阅读 下载PDF
Activity Data and Emission Factor for Forestry and Other Land Use Change Subsector to Enhance Carbon Market Policy and Action in Malawi
4
作者 Edward Missanjo Henry Kadzuwa 《Journal of Environmental Protection》 2024年第4期401-414,共14页
Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Fo... Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Forestry and Other Land Use Change (FOLU) subsector in Malawi. The results indicate that “forestland to cropland,” and “wetland to cropland,” were the major land use changes from the year 2000 to the year 2022. The forestland steadily declined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wetland, and settlements steadily increased at the rate of 8228 ha (0.14%);5257 ha (0.17%);and 1941 ha (8.1%) per annum, respectively. Furthermore, the results indicate that the “grassland to forestland” changes were higher than the “forestland to grassland” changes, suggesting that forest regrowth was occurring. On the emission factor, the results interestingly indicate that there was a significant increase in carbon sequestration in the FOLU subsector from the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 0.17 tCO<sub>2</sub> e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be concluded that there is potential for a Carbon market in Malawi. 展开更多
关键词 Activity data Emission factor Climate Change Forestland Carbon Market
在线阅读 下载PDF
Comprehensive security risk factor identification for small reservoirs with heterogeneous data based on grey relational analysis model 被引量:6
5
作者 Jing-chun Feng Hua-ai Huang +1 位作者 Yao Yin Ke Zhang 《Water Science and Engineering》 EI CAS CSCD 2019年第4期330-338,共9页
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ... Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data. 展开更多
关键词 Security risk factor identification Heterogeneous data Grey relational analysis model Relational degree Information entropy Conditional entropy Small reservoir GUANGXI
在线阅读 下载PDF
Development of Safety Factors for the UT Data Analysis Method in Plant Piping
6
作者 Hun Yun Kyeong-Mo Hwang Chan-Kyoo Lee 《World Journal of Nuclear Science and Technology》 2013年第4期143-149,共7页
There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Im... There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type. 展开更多
关键词 WALL THINNING UT (Ultrasonic Test) Reliability Analysis FAC (Flow-Accelerated Corrosion) Safety factor Measurement data
暂未订购
Evaluation of Crash Contributing Factors
7
作者 Ye Dong Jonathan S. Wood 《Journal of Transportation Technologies》 2025年第1期155-178,共24页
Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes fa... Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes factors that contribute to crash occurrence based on two national datasets in the United States (CISS and NASS-CDS) for the years 2017-2022 and 2010-2015, respectively. Three taxonomies were applied to enhance understanding of the various crash contributing factors. These taxonomies were developed based on previous research and practice and involved different groupings of human factors, vehicle factors, and roadway and environmental factors. Statistics for grouping the different types of factors and statistics for specific factors are provided. The results indicate that human factors are present in over 95% of crashes, roadway and environmental factors are present in over 45% of crashes, and vehicle factors are present in less than 2% of crashes. Regarding factors related to human error and vehicle maintenance, speeding is involved in over 25% of crashes, distraction is involved in over 20% of crashes, alcohol and drugs are involved in over 9% of crashes, and vehicle maintenance is involved in approximately 0.45% of crashes. Approximately 4.4% of crashes involve a driver who “looked but did not see.” Weather is involved in over 13% of crashes. Conclusions: The findings indicate that, consistent with previous research, human factors or human error are present in around 95% of crashes. Infrastructure and environmental factors contribute to about 45% of crashes. Vehicle factors contribute to only 1.67% - 1.71% of crashes. The results from this study could potentially be used to inform future safety management and improvement activities, including policy-making, regulation development, safe systems and systemic safety approaches to safety management, and other engineering, education, emergency response, enforcement, evaluation, and encouragement activities. The findings could also be used in the development of future Driver Assistance Technologies (DAT) systems and in enhancing existing technologies. 展开更多
关键词 Contributing factors Human factors Vehicle factors Environmental factors Crash data Vision Zero
在线阅读 下载PDF
Graph Regularized L_p Smooth Non-negative Matrix Factorization for Data Representation 被引量:10
8
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Irene Cheng Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第2期584-595,共12页
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ... This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods. 展开更多
关键词 data clustering dimensionality reduction GRAPH REGULARIZATION LP SMOOTH non-negative matrix factorization(SNMF)
在线阅读 下载PDF
基于自编码神经网络高阶特征提取的温室环境因子高维数据压缩方法
9
作者 冷令 王琳 +3 位作者 吕金洪 李浩欣 吴伟斌 高婷 《中国农机化学报》 北大核心 2026年第1期252-257,共6页
针对温室环境数据的维度高、冗余性强,导致数据处理存在压缩比低和峰值信噪比较高的问题,提出基于自编码神经网络高阶特征提取的温室环境因子高维数据压缩方法。应用改进回归方程,填补温室环境因子数据中的缺失值,针对深度自编码神经网... 针对温室环境数据的维度高、冗余性强,导致数据处理存在压缩比低和峰值信噪比较高的问题,提出基于自编码神经网络高阶特征提取的温室环境因子高维数据压缩方法。应用改进回归方程,填补温室环境因子数据中的缺失值,针对深度自编码神经网络的内部协变量迁移现象,加入自适应平衡层,结合小批量梯度下降法,构建深度自适应平衡自编码神经网络,提取温室环境因子高阶特征,基于矢量量化思想,判断相对误差,通过实施新码书计算,获得各划分的质心,根据码书训练结果,设计高维数据压缩方法。结果表明,当数据量超过50 GB时,所设计方法的压缩比下降0.7个百分点,降幅为3.8%,整体压缩性能表现优异;峰值信噪比随着采样率变大并未大幅下降,仅降低4 dB,降幅为7.5%,压缩峰值信噪比具备更优的重建保真度。该方法具有更高的压缩比且有效降低信噪比,对提高温室管理的智能化水平具有借鉴价值。 展开更多
关键词 改进回归方程 自编码神经网络 高阶特征提取 温室环境因子 高维数据压缩
在线阅读 下载PDF
数据要素市场化驱动产业链韧性提升的作用机制检验
10
作者 王倩 周瑛 《统计与决策》 北大核心 2026年第1期43-49,共7页
在数字经济深度重构全球产业分工格局与“逆全球化”浪潮交织的背景下,研究数据要素市场化与产业链韧性提升的互动机理,对于构建新发展格局具有重要的理论价值。文章将设立数据交易平台视为一项准自然实验,基于2010—2024年中国281个地... 在数字经济深度重构全球产业分工格局与“逆全球化”浪潮交织的背景下,研究数据要素市场化与产业链韧性提升的互动机理,对于构建新发展格局具有重要的理论价值。文章将设立数据交易平台视为一项准自然实验,基于2010—2024年中国281个地级及以上城市的面板数据,构建多期双重差分模型,探究数据要素市场化影响产业链韧性的作用机制。结果表明,数据要素市场化通过促进科技创新、缓解资源错配、优化产业结构与强化产业集聚显著提升产业链韧性。异质性分析发现,在非资源型城市、大城市及非老工业基地,数据要素市场化对产业链韧性表现出更显著的提升作用。 展开更多
关键词 数据要素市场化 数据交易平台 产业链韧性
原文传递
全国统一大市场、数据要素与制造业全要素生产率增长
11
作者 宁朝山 《长白学刊》 2026年第1期15-28,共14页
全要素生产率提升是衡量新质生产力发展的核心标志。本研究在理论阐释全国统一大市场、数据要素利用与制造业全要素生产率之间关系的基础上,选取2014—2023年中国省级面板数据,实证研究全国统一大市场对制造业全要素生产率的影响及其作... 全要素生产率提升是衡量新质生产力发展的核心标志。本研究在理论阐释全国统一大市场、数据要素利用与制造业全要素生产率之间关系的基础上,选取2014—2023年中国省级面板数据,实证研究全国统一大市场对制造业全要素生产率的影响及其作用机制。结果表明,全国统一大市场对制造业全要素生产率增长具有显著正向影响。作用机制分析结果显示,降低交易成本是全国统一大市场促进制造业全要素生产率增长的重要渠道。异质性分析结果显示,全国统一大市场对东部地区以及资本和技术密集型制造业的全要素生产率具有更强的促进作用。进一步的扩展性分析结果表明,数据要素利用能够显著增强全国统一大市场对制造业全要素生产率的促进效应。本研究结论可以为加快推进数据要素市场化配置提供理论依据;为构建全国统一市场,实现制造业全要素生产率提升,助力经济高质量发展提供决策参考。 展开更多
关键词 全国统一大市场 数据要素利用 制造业 全要素生产率
在线阅读 下载PDF
数据要素视角下智能鸿沟地区异质性形成机理框架构建
12
作者 陆灿 高慧 杨建林 《情报杂志》 北大核心 2026年第1期136-144,共9页
[目的]在数字经济成为我国高质量发展核心引擎的背景下,缩小地区间智能鸿沟是释放数据要素价值、驱动人工智能技术健康可持续发展的核心路径。[方法]本研究在揭示智能鸿沟和数字鸿沟形成本质差异的基础上,创新性地引入数据要素视角构建... [目的]在数字经济成为我国高质量发展核心引擎的背景下,缩小地区间智能鸿沟是释放数据要素价值、驱动人工智能技术健康可持续发展的核心路径。[方法]本研究在揭示智能鸿沟和数字鸿沟形成本质差异的基础上,创新性地引入数据要素视角构建了一个用于揭示智能鸿沟地区异质性形成机理的框架。[结果/结论]该框架以数据要素价值释放路径为横轴,以智能鸿沟形成过程中的前置要素、演化路径和表现维度为纵轴,系统揭示了智能鸿沟地区异质性的形成机理:数据基于关键数据行为经过资源化、资产化、资本化,与技术、组织、环境三要素交互赋能,由于地区间数据要素三阶段价值释放能力的差异最终形成数据沟、经济沟和社会沟。本研究从数据要素视角剖析智能鸿沟地区异质性,于理论上拓宽数据要素理论边界;于实践层面上,为科技资源配置、政策优化指明方向。 展开更多
关键词 人工智能 智能鸿沟 数据要素 数据资源化 数据资产化 数据资本化
在线阅读 下载PDF
Data Flow&Transaction Mode Classification and An Explorative Estimation on Data Storage&Transaction Volume 被引量:4
13
作者 Cai Yuezhou Liu Yuexin 《China Economist》 2022年第6期78-112,共35页
The public has shown great interest in the data factor and data transactions,but the current attention is overly focused on personal behavioral data and transactions happening at Data Exchanges.To deliver a complete p... The public has shown great interest in the data factor and data transactions,but the current attention is overly focused on personal behavioral data and transactions happening at Data Exchanges.To deliver a complete picture of data flaw and transaction,this paper presents a systematic overview of the flow and transaction of personal,corporate and public data on the basis of data factor classification from various perspectives.By utilizing various sources of information,this paper estimates the volume of data generation&storage and the volume&trend of data market transactions for major economies in the world with the following findings:(i)Data classification is diverse due to a broad variety of applying scenarios,and data transaction and profit distribution are complex due to heterogenous entities,ownerships,information density and other attributes of different data types.(ii)Global data transaction has presented with the characteristics of productization,servitization and platform-based mode.(iii)For major economies,there is a commonly observed disequilibrium between data generation scale and storage scale,which is particularly striking for China.(i^v)The global data market is in a nascent stage of rapid development with a transaction volume of about 100 billion US dollars,and China s data market is even more underdeveloped and only accounts for some 10%of the world total.All sectors of the society should be flly aware of the diversity and complexity of data factor classification and data transactions,as well as the arduous and long-term nature of developing and improving relevant institutional systems.Adapting to such features,efforts should be made to improve data classification,enhance computing infrastructure development,foster professional data transaction and development institutions,and perfect the data governance system. 展开更多
关键词 data factor data classification data transaction mode data generation&storage volume data transaction volume
在线阅读 下载PDF
基于Panel-data的区际产业转移粘性分析 被引量:19
14
作者 张存菊 苗建军 《软科学》 CSSCI 北大核心 2010年第1期75-79,共5页
利用面板数据模型,以江苏省为例,对28个制造业的科技进步、产业集群、区域人力资本积累、沉没成本和资产专用性、劳动力跨区域流动、制度创新、政府阻力等因素对产业转移粘性的关系进行了实证研究,并依据各个因素的贡献率得出了跨区域... 利用面板数据模型,以江苏省为例,对28个制造业的科技进步、产业集群、区域人力资本积累、沉没成本和资产专用性、劳动力跨区域流动、制度创新、政府阻力等因素对产业转移粘性的关系进行了实证研究,并依据各个因素的贡献率得出了跨区域产业转移的初步结论。 展开更多
关键词 Panel—data模型 产业转移 阻力因素
在线阅读 下载PDF
城市大气污染物空间分布特征及其影响因子研究
15
作者 宫燕 赵丽平 +2 位作者 张天宇 白佳琪 李欣 《环境科学与管理》 2026年第1期36-41,共6页
深入分析某城市大气污染物的空间分布特征,探讨影响这些特征的关键因素。考虑地形、气候、产业分布及城市化进程等多重因素设置采样点,采集污染物浓度数据,分析城市大气污染物空间分布特征。结合社会经济数据、气象数据及地理信息数据,... 深入分析某城市大气污染物的空间分布特征,探讨影响这些特征的关键因素。考虑地形、气候、产业分布及城市化进程等多重因素设置采样点,采集污染物浓度数据,分析城市大气污染物空间分布特征。结合社会经济数据、气象数据及地理信息数据,采用广义加性模型分析多种因素对污染物浓度的影响。不同采样点的污染物浓度存在显著差异。各项大气污染物浓度的影响因子是多方面的,包括地理信息、社会经济和气象数据等多个方面,且不同污染物之间的影响因子存在差异。城市大气污染物的空间分布特征受多种因素共同作用。 展开更多
关键词 大气污染物 空间分布特征 影响因子 社会经济数据 气象数据
在线阅读 下载PDF
基于Panel Data模型的内蒙古房地产价格影响因素的区域性差异研究 被引量:1
16
作者 刘佳 乔莉 张娜 《征信》 2017年第6期65-71,共7页
以地方GDP、地方财政收入、职工平均工资、房地产开发投资额为影响内蒙古房地产价格的主要指标,选取2001—2014年内蒙古12个盟市的相关数据,运用面板数据模型,将12个盟市分为中、东、西三个区域,并对影响三个区域房地产价格的因素进行... 以地方GDP、地方财政收入、职工平均工资、房地产开发投资额为影响内蒙古房地产价格的主要指标,选取2001—2014年内蒙古12个盟市的相关数据,运用面板数据模型,将12个盟市分为中、东、西三个区域,并对影响三个区域房地产价格的因素进行差异性分析。结果表明,内蒙古房地产价格的影响因素确实存在明显的区域差异。地方GDP对房地产价格的影响在西部最强,中部次之,东部不显著;财政收入和房地产开发投资额对房地产价格的影响程度并不大,明显小于另外两个变量;职工平均工资对中、东、西部的影响东部最大,中部次之,西部不显著。 展开更多
关键词 房地产价格 影响因素 区域差异 PANELdata模型 内蒙古
在线阅读 下载PDF
基于Panel Data模型的住宅价格影响因素研究——以河北省为例 被引量:2
17
作者 李成刚 陈永斌 李方杰 《石家庄经济学院学报》 2009年第2期37-40,共4页
文章引入Panel Data模型,结合河北省住宅市场相关数据,建立住宅价格影响因素模型,通过实证分析找出了影响河北省住宅价格的主要因素。在此基础之上,结合河北省住宅市场的具体情况,提出了调控河北省住宅价格的措施和建议。
关键词 PANEL data模型 住宅价格 影响因素 实证分析
在线阅读 下载PDF
基于SIP-LOF算法的地形变仪器监测数据异常识别方法
18
作者 冯晓晗 杨江 《地震工程学报》 北大核心 2026年第1期242-250,共9页
为进一步检测地形变仪器的异常数据,提升仪器数据可用率及运维人员故障初步判别效率,文章提出一种基于数据挖掘的序列重要点-局部异常因子(SIP-LOF)算法。将地形变仪器的原始观测序列分割成子序列,通过计算序列中每个点的离群距离和局... 为进一步检测地形变仪器的异常数据,提升仪器数据可用率及运维人员故障初步判别效率,文章提出一种基于数据挖掘的序列重要点-局部异常因子(SIP-LOF)算法。将地形变仪器的原始观测序列分割成子序列,通过计算序列中每个点的离群距离和局部异常因子等,判断该数据点是否为离群点,进而量化每个数据点的异常程度,实现对前兆形变观测中自然干扰、设备故障、地震前兆等典型事件的异常检测。研究结果表明,相较于传统方法,该方法针对多个台站前兆数据的异常检测均有较好的检测效果,异常类型覆盖面更广;并且,当LOF限值为2.5时平均异常判定准确率最高,对前兆数据的处理工作具有积极意义。 展开更多
关键词 观测数据 典型事件 异常检测 局部异常因子
在线阅读 下载PDF
基于Panel-data的江苏省区域经济增长要素分析
19
作者 方琳 张庆海 《淮海工学院学报(自然科学版)》 CAS 2013年第1期71-74,共4页
利用江苏省2002—2010年的面板数据,研究资本要素、制度因素、消费结构对江苏省区域经济增长的影响。研究表明:资本和外贸依存度对经济增长的贡献显著,对3大区域的经济增长都起到积极促进的作用;农村恩格尔系数对于苏中地区的贡献是显著... 利用江苏省2002—2010年的面板数据,研究资本要素、制度因素、消费结构对江苏省区域经济增长的影响。研究表明:资本和外贸依存度对经济增长的贡献显著,对3大区域的经济增长都起到积极促进的作用;农村恩格尔系数对于苏中地区的贡献是显著的,说明提高苏中地区农村的消费水平有助于促进苏中经济的增长。 展开更多
关键词 资本要素 制度因素 消费结构 Panel—data
在线阅读 下载PDF
粮食主产区农民收入增长要素的Panel Data模型分析 被引量:4
20
作者 张冬平 邓蒙芝 +1 位作者 李为 赵淑英 《河南农业大学学报》 CAS CSCD 北大核心 2006年第5期536-540,544,共6页
运用Panel Data模型对中国粮食主产区农民收入增长要素进行了计量分析,结果表明,农业生产条件、农业生产资料的使用、农产品价格水平、农业生产结构、资本投入等因素对粮食主产区农民人均农业纯收入增长具有显著影响.
关键词 粮食主产区 PANEL data 农民收入 增长要素
在线阅读 下载PDF
上一页 1 2 222 下一页 到第
使用帮助 返回顶部