The design of iterative learning controller(ILC) requires to store the system input, output or control parameters of previous trials for generating the input of the current trial. In order to apply the iterative learn...The design of iterative learning controller(ILC) requires to store the system input, output or control parameters of previous trials for generating the input of the current trial. In order to apply the iterative learning controller for a real application and reduce the memory size for implementation, a current error based sampled-data proportional-derivative(PD) type iterative learning controller is proposed for control systems with initial resetting error, input disturbance and output measurement noise in this paper.The proposed iterative learning controller is simple and effective. The first contribution in this paper is to prove the learning error convergence via a rigorous technical analysis. It is shown that the learning error will converge to a residual set if a forgetting factor is introduced in the controller. All the theoretical results are also shown by computer simulations. The second main contribution is to realize the iterative learning controller by a digital circuit using a field programmable gate array(FPGA) chip applied to repetitive position tracking control of direct current(DC) motors. The feasibility and effectiveness of the proposed current error based sampleddata iterative learning controller are demonstrated by the experiment results. Finally, the relationship between learning performance and design parameters are also discussed extensively.展开更多
This paper presents a new method for soft error detection using software redundancy (SEDSR) that is able to detect transient faults. Soft errors damage the control flow and data of programs and designers usually use h...This paper presents a new method for soft error detection using software redundancy (SEDSR) that is able to detect transient faults. Soft errors damage the control flow and data of programs and designers usually use hardware-based solutions to handle them. Software-based techniques for soft error detection force less cost and delay to systems and do not change their configuration. Therefore, these kinds of methods are appropriate alternatives for hardware-based techniques. SEDSR has two separate parts for data and control flow errors detection. Fault injection method is used to compare SEDSR with previous methods of this field based on the new parameter of “Evaluation Factor” that takes in account fault coverage, memory and performance overheads. These parameters are important in real time safety critical applications. Experimental results on SPEC2000 and some traditional benchmarks of this field show that SEDSR is much better than previous methods of this field. SEDSR’s evaluation factor is about 50% better than other methods of this field. These results show its success in satisfaction of the existing tradeoff between fault coverage, performance and memory overheads.展开更多
针对大数据传输中的数据机密性、完整性和数据丢失等问题,提出一种基于简化数据加密标准(Simplified Data Encryption Standard,SDES)和双轮差错控制的大数据集成安全系统。使用SDES加密算法生成加密字符串,并设计意外数据丢失备份系统...针对大数据传输中的数据机密性、完整性和数据丢失等问题,提出一种基于简化数据加密标准(Simplified Data Encryption Standard,SDES)和双轮差错控制的大数据集成安全系统。使用SDES加密算法生成加密字符串,并设计意外数据丢失备份系统以提高机密性和防止意外数据丢失。基于双轮差错控制以较低的空间开销控制传输过程中包含的任意数量的离散或连续错误位,基于固定长度编码(Fixed Length Coding,FLC)的无损压缩技术来减少数据开销。该算法具有较高的AE值、熵和压缩百分比,具有提供更高的数据机密性和完整性的潜力。展开更多
基金supported by National Science Council,Taiwan,China(No.NSC102-2221-E-211-011)National Nature Science Foundation of China(No.61374102)
文摘The design of iterative learning controller(ILC) requires to store the system input, output or control parameters of previous trials for generating the input of the current trial. In order to apply the iterative learning controller for a real application and reduce the memory size for implementation, a current error based sampled-data proportional-derivative(PD) type iterative learning controller is proposed for control systems with initial resetting error, input disturbance and output measurement noise in this paper.The proposed iterative learning controller is simple and effective. The first contribution in this paper is to prove the learning error convergence via a rigorous technical analysis. It is shown that the learning error will converge to a residual set if a forgetting factor is introduced in the controller. All the theoretical results are also shown by computer simulations. The second main contribution is to realize the iterative learning controller by a digital circuit using a field programmable gate array(FPGA) chip applied to repetitive position tracking control of direct current(DC) motors. The feasibility and effectiveness of the proposed current error based sampleddata iterative learning controller are demonstrated by the experiment results. Finally, the relationship between learning performance and design parameters are also discussed extensively.
文摘This paper presents a new method for soft error detection using software redundancy (SEDSR) that is able to detect transient faults. Soft errors damage the control flow and data of programs and designers usually use hardware-based solutions to handle them. Software-based techniques for soft error detection force less cost and delay to systems and do not change their configuration. Therefore, these kinds of methods are appropriate alternatives for hardware-based techniques. SEDSR has two separate parts for data and control flow errors detection. Fault injection method is used to compare SEDSR with previous methods of this field based on the new parameter of “Evaluation Factor” that takes in account fault coverage, memory and performance overheads. These parameters are important in real time safety critical applications. Experimental results on SPEC2000 and some traditional benchmarks of this field show that SEDSR is much better than previous methods of this field. SEDSR’s evaluation factor is about 50% better than other methods of this field. These results show its success in satisfaction of the existing tradeoff between fault coverage, performance and memory overheads.