This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of...This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of adverse winter weather conditions on highway driving behavior based on automated (computer) and manual methods. The research was conducted through two case studies. The first case study was conducted to evaluate the feasibility of applying an au- tomated approach to extracting driver behavior data based on 15 video recordings obtained in the winter 2013 at three dif- ferent locations on the Don Valley Parkway in Toronto, Canada. A comparison was made between the automated approach and manual approach, and issues in collecting data using the automated approach under winter conditions were identified. The second case study was based on high quality data collected in the winter 2014, at a location on Highway 25 in Montreal, Canada. The results demonstrate the effectiveness of the automated analytical framework in analyzing driver behavior, as well as evaluating the impact of adverse winter weather conditions on driver behavior. This approach could be applied to evaluate winter maintenance strategies and crash risk on highways during adverse winter weather conditions.展开更多
Presented in this paper is the development of the driver for the data acquisition card with a peripheral component interconnection (PCI) local bus on the ion cyclotron range of frequency heating (1CRH) system. The...Presented in this paper is the development of the driver for the data acquisition card with a peripheral component interconnection (PCI) local bus on the ion cyclotron range of frequency heating (1CRH) system. The driver is mainly aimed at the embedded VxWorks system (real-time operating system) which is widely used in various fields of real-time systems. An efficient way is employed to develop this driver, which will advance the real-time control of the ICRH system on the experimental advanced superconductor tokamak (EAST). The driver is designed using the TORNADO integrated development environment (IDE), and implemented in C plus language. The details include the hardware configuration, analogue/digital (A/D) and digital/analogue (D/A) conversion, input and output (I/O) operation of the driver to support over five cards. The data acquisition card can be manipulated in a low-level program and meet the requirements of A/D conversion and D/A outputs.展开更多
Field Programmable Gate Array(FPGA),combined with ARM(Advanced RISC Machines) is increasingly employed in the portable data acquisition(DAQ) system for nuclear experiments to reduce the system volume and achieve power...Field Programmable Gate Array(FPGA),combined with ARM(Advanced RISC Machines) is increasingly employed in the portable data acquisition(DAQ) system for nuclear experiments to reduce the system volume and achieve powerful and multifunctional capacity.High-speed data transmission between FPGA and ARM is one of the most challenging issues for system implementation.In this paper,we propose a method to realize the high-speed data transmission by using the FPGA to acquire massive data from FEE(Front-end electronics) and send it to the ARM whilst the ARM to transmit the data to the remote computer through the TCP/IP protocol for later process.This paper mainly introduces the interface design of the high-speed transmission method between the FPGA and the ARM,the transmission logic of the FPGA,and the program design of the ARM.The theoretical research shows that the maximal transmission speed between the FPGA and the ARM through this way can reach 50 MB/s.In a realistic nuclear physics experiment,this portable DAQ system achieved 2.2 MB/s data acquisition speed.展开更多
文摘This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of adverse winter weather conditions on highway driving behavior based on automated (computer) and manual methods. The research was conducted through two case studies. The first case study was conducted to evaluate the feasibility of applying an au- tomated approach to extracting driver behavior data based on 15 video recordings obtained in the winter 2013 at three dif- ferent locations on the Don Valley Parkway in Toronto, Canada. A comparison was made between the automated approach and manual approach, and issues in collecting data using the automated approach under winter conditions were identified. The second case study was based on high quality data collected in the winter 2014, at a location on Highway 25 in Montreal, Canada. The results demonstrate the effectiveness of the automated analytical framework in analyzing driver behavior, as well as evaluating the impact of adverse winter weather conditions on driver behavior. This approach could be applied to evaluate winter maintenance strategies and crash risk on highways during adverse winter weather conditions.
文摘Presented in this paper is the development of the driver for the data acquisition card with a peripheral component interconnection (PCI) local bus on the ion cyclotron range of frequency heating (1CRH) system. The driver is mainly aimed at the embedded VxWorks system (real-time operating system) which is widely used in various fields of real-time systems. An efficient way is employed to develop this driver, which will advance the real-time control of the ICRH system on the experimental advanced superconductor tokamak (EAST). The driver is designed using the TORNADO integrated development environment (IDE), and implemented in C plus language. The details include the hardware configuration, analogue/digital (A/D) and digital/analogue (D/A) conversion, input and output (I/O) operation of the driver to support over five cards. The data acquisition card can be manipulated in a low-level program and meet the requirements of A/D conversion and D/A outputs.
文摘Field Programmable Gate Array(FPGA),combined with ARM(Advanced RISC Machines) is increasingly employed in the portable data acquisition(DAQ) system for nuclear experiments to reduce the system volume and achieve powerful and multifunctional capacity.High-speed data transmission between FPGA and ARM is one of the most challenging issues for system implementation.In this paper,we propose a method to realize the high-speed data transmission by using the FPGA to acquire massive data from FEE(Front-end electronics) and send it to the ARM whilst the ARM to transmit the data to the remote computer through the TCP/IP protocol for later process.This paper mainly introduces the interface design of the high-speed transmission method between the FPGA and the ARM,the transmission logic of the FPGA,and the program design of the ARM.The theoretical research shows that the maximal transmission speed between the FPGA and the ARM through this way can reach 50 MB/s.In a realistic nuclear physics experiment,this portable DAQ system achieved 2.2 MB/s data acquisition speed.