This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
Improving the computational efficiency of multi-physics simulation and constructing a real-time online simulation method is an important way to realise the virtual-real fusion of entities and data of power equipment w...Improving the computational efficiency of multi-physics simulation and constructing a real-time online simulation method is an important way to realise the virtual-real fusion of entities and data of power equipment with digital twin.In this paper,a datadriven fast calculation method for the temperature field of resin impregnated paper(RIP)bushing used in converter transformer valve-side is proposed,which combines the data dimensionality reduction technology and the surrogate model.After applying the finite element algorithm to obtain the temperature field distribution of RIP bushing under different operation conditions as the input dataset,the proper orthogonal decomposition(POD)algorithm is adopted to reduce the order and obtain the low-dimensional projection of the temperature data.On this basis,the surrogate model is used to construct the mapping relationship between the sensor monitoring data and the low-dimensional projection,so that it can achieve the fast calculation and reconstruction of temperature field distribution.The results show that this method can effectively and quickly calculate the overall temperature field distribution of the RIP bushing.The maximum relative error and the average relative error are less than 4.5%and 0.25%,respectively.The calculation speed is at the millisecond level,meeting the needs of digitalisation of power equipment.展开更多
As the number of distributed power supplies increases on the user side,smart grids are becoming larger and more complex.These changes bring new security challenges,especially with the widespread adop-tion of data-driv...As the number of distributed power supplies increases on the user side,smart grids are becoming larger and more complex.These changes bring new security challenges,especially with the widespread adop-tion of data-driven control methods.This paper introduces a novel black-box false data injection attack(FDIA)method that exploits the measurement modules of distributed power supplies within smart grids,highlighting its effectiveness in bypassing conventional security measures.Unlike traditional methods that focus on data manipulation within communication networks,this approach directly injects false data at the point of measurement,using a generative adversarial network(GAN)to generate stealthy attack vectors.This method requires no detailed knowledge of the target system,making it practical for real-world attacks.The attack’s impact on power system stability is demonstrated through experiments,high-lighting the significant cybersecurity risks introduced by data-driven algorithms in smart grids.展开更多
The article "Data-driven soft sensors in blast furnace ironmaking:a survey,"written by Yueyang LUO,Xinmin ZHANG,Manabu KANO,Long DENG,Chunjie YANG,and Zhihuan SONG,was originally published electronically on ...The article "Data-driven soft sensors in blast furnace ironmaking:a survey,"written by Yueyang LUO,Xinmin ZHANG,Manabu KANO,Long DENG,Chunjie YANG,and Zhihuan SONG,was originally published electronically on the publisher's Internet portal on Mar.27,2023 without open access.展开更多
In the rapidly evolving landscape of digital health,the integration of data analytics and Internet healthserviceshasbecome a pivotal area of exploration.To meet keen social needs,Prof.Shan Liu(Xi'an Jiaotong Unive...In the rapidly evolving landscape of digital health,the integration of data analytics and Internet healthserviceshasbecome a pivotal area of exploration.To meet keen social needs,Prof.Shan Liu(Xi'an Jiaotong University)and Prof.Xing Zhang(Wuhan Textile University)have published the timely book Datadriven Internet Health Platform Service Value Co-creation through China Science Press.The book focuses on the provision of medical and health services from doctors to patients through Internet health platforms,where the service value is co-created by three parties.展开更多
Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) ...Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) batteries. However, the time-consuming signal data acquisition and the lack of interpretability of model still hinder its efficient deployment. Motivated by this, this letter proposes a novel and interpretable data-driven learning strategy through combining the benefits of explainable AI and non-destructive ultrasonic detection for battery SoH estimation. Specifically, after equipping battery with advanced ultrasonic sensor to promise fast real-time ultrasonic signal measurement, an interpretable data-driven learning strategy named generalized additive neural decision ensemble(GANDE) is designed to rapidly estimate battery SoH and explain the effects of the involved ultrasonic features of interest.展开更多
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ...Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.展开更多
Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function...Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed ...Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed into the model. And the computational errors are corrected using statistical approaches. It involves a variety of aspects, including the uncertainty modeling, the measurement evaluation, the system model and the measurement model coupling ,the computation complexity, and the performance issue. Authors intend to set up the architecture of DDDS for wildfire spread model, DEVS-FIRE, based on the discrete event speeification (DEVS) formalism. The experimental results show that the framework can track the dynamically changing fire front based on fire sen- sor data, thus, it provides more aecurate predictions.展开更多
Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorpt...Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.展开更多
The application scope and future development directions of machine learning models(supervised learning, transfer learning, and unsupervised learning) that have driven energy material design are discussed.
In this article,we develop an online robust actor-critic-disturbance guidance law for a missile-target interception system with limited normal acceleration capability.Firstly,the missiletarget engagement is formulated...In this article,we develop an online robust actor-critic-disturbance guidance law for a missile-target interception system with limited normal acceleration capability.Firstly,the missiletarget engagement is formulated as a zero-sum pursuit-evasion game problem.The key is to seek the saddle point solution of the Hamilton Jacobi Isaacs(HJI)equation,which is generally intractable due to the nonlinearity of the problem.Then,based on the universal approximation capability of Neural Networks(NNs),we construct the critic NN,the actor NN and the disturbance NN,respectively.The Bellman error is adjusted by the normalized-least square method.The proposed scheme is proved to be Uniformly Ultimately Bounded(UUB)stable by Lyapunov method.Finally,the effectiveness and robustness of the developed method are illustrated through numerical simulations against different types of non-stationary targets and initial conditions.展开更多
In this paper,a data-driven method to model the three-dimensional engineering structure under the cyclic load with the one-dimensional stress-strain data is proposed.In this method,one-dimensional stress-strain data o...In this paper,a data-driven method to model the three-dimensional engineering structure under the cyclic load with the one-dimensional stress-strain data is proposed.In this method,one-dimensional stress-strain data obtained under uniaxial load and different loading history is learned offline by gate recurrent unit(GRU)network.The learned constitutive model is embedded into the general finite element framework through data expansion from one dimension to three dimensions,which can perform stress updates under the three-dimensional setting.The proposed method is then adopted to drive numerical solutions of boundary value problems for engineering structures.Compared with direct numerical simulations using the J2 plasticity model,the stress-strain response of beam structure with elastoplastic materials under forward loading,reverse loading and cyclic loading were predicted accurately.Loading path dependent response of structure was captured and the effectiveness of the proposed method is verified.The shortcomings of the proposed method are also discussed.展开更多
A data driven computational model that accounts for more than two material states has been presented in this work. Presented model can account for multiple state variables, such as stresses,strains, strain rates and f...A data driven computational model that accounts for more than two material states has been presented in this work. Presented model can account for multiple state variables, such as stresses,strains, strain rates and failure stress, as compared to previously reported models with two states.Model is used to perform deformation and failure simulations of carbon nanotubes and carbon nanotube/epoxy nanocomposites. The model capability of capturing the strain rate dependent deformation and failure has been demonstrated through predictions against uniaxial test data taken from literature. The predicted results show a good agreement between data set taken from literature and simulations.展开更多
In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved slidi...In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.展开更多
In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-dr...In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-driven approach,using secure private cloud technology and virtualization technology.The platform has a general hardware and software architecture,which integrates the functions of graphical editing,automated testing,data processing,fault diagnosis and so on.It can realize multi-task parallel testing.Compared with the traditional test mode,the platform has obvious advantages on testing eficiency and effectiveness.展开更多
The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in c...The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in computer graphics in recent years.First,we provide a brief introduction of physical based fluid simulation methods based on their spatial discretization,including Lagrangian,Eulerian,and hybrid methods.The characteristics of these underlying structures and their inherent connection with data driven methodologies are then analyzed.Subsequently,we review studies pertaining to a wide range of applications,including data-driven solvers,detail enhancement,animation synthesis,fluid control,and differentiable simulation.Finally,we discuss some related issues and potential directions in data-driven fluid simulation.We conclude that the fluid simulation combined with data-driven methods has some advantages,such as higher simulation efficiency,rich details and different pattern styles,compared with traditional methods under the same parameters.It can be seen that the data-driven fluid simulation is feasible and has broad prospects.展开更多
Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsands...Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.展开更多
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
基金supported by China Postdoctoral Science Foundation,Grant 2024M753544Science and Technology Project of CSG,Grant GDKJXM2022106.
文摘Improving the computational efficiency of multi-physics simulation and constructing a real-time online simulation method is an important way to realise the virtual-real fusion of entities and data of power equipment with digital twin.In this paper,a datadriven fast calculation method for the temperature field of resin impregnated paper(RIP)bushing used in converter transformer valve-side is proposed,which combines the data dimensionality reduction technology and the surrogate model.After applying the finite element algorithm to obtain the temperature field distribution of RIP bushing under different operation conditions as the input dataset,the proper orthogonal decomposition(POD)algorithm is adopted to reduce the order and obtain the low-dimensional projection of the temperature data.On this basis,the surrogate model is used to construct the mapping relationship between the sensor monitoring data and the low-dimensional projection,so that it can achieve the fast calculation and reconstruction of temperature field distribution.The results show that this method can effectively and quickly calculate the overall temperature field distribution of the RIP bushing.The maximum relative error and the average relative error are less than 4.5%and 0.25%,respectively.The calculation speed is at the millisecond level,meeting the needs of digitalisation of power equipment.
基金supported by the National Natural Science Foundation of China(62302234).
文摘As the number of distributed power supplies increases on the user side,smart grids are becoming larger and more complex.These changes bring new security challenges,especially with the widespread adop-tion of data-driven control methods.This paper introduces a novel black-box false data injection attack(FDIA)method that exploits the measurement modules of distributed power supplies within smart grids,highlighting its effectiveness in bypassing conventional security measures.Unlike traditional methods that focus on data manipulation within communication networks,this approach directly injects false data at the point of measurement,using a generative adversarial network(GAN)to generate stealthy attack vectors.This method requires no detailed knowledge of the target system,making it practical for real-world attacks.The attack’s impact on power system stability is demonstrated through experiments,high-lighting the significant cybersecurity risks introduced by data-driven algorithms in smart grids.
文摘The article "Data-driven soft sensors in blast furnace ironmaking:a survey,"written by Yueyang LUO,Xinmin ZHANG,Manabu KANO,Long DENG,Chunjie YANG,and Zhihuan SONG,was originally published electronically on the publisher's Internet portal on Mar.27,2023 without open access.
文摘In the rapidly evolving landscape of digital health,the integration of data analytics and Internet healthserviceshasbecome a pivotal area of exploration.To meet keen social needs,Prof.Shan Liu(Xi'an Jiaotong University)and Prof.Xing Zhang(Wuhan Textile University)have published the timely book Datadriven Internet Health Platform Service Value Co-creation through China Science Press.The book focuses on the provision of medical and health services from doctors to patients through Internet health platforms,where the service value is co-created by three parties.
基金supported by the National Natural Science Foundation of China(62373224,62333013,U23A20327)the Natural Science Foundation of Shandong Province(ZR2024JQ021)
文摘Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) batteries. However, the time-consuming signal data acquisition and the lack of interpretability of model still hinder its efficient deployment. Motivated by this, this letter proposes a novel and interpretable data-driven learning strategy through combining the benefits of explainable AI and non-destructive ultrasonic detection for battery SoH estimation. Specifically, after equipping battery with advanced ultrasonic sensor to promise fast real-time ultrasonic signal measurement, an interpretable data-driven learning strategy named generalized additive neural decision ensemble(GANDE) is designed to rapidly estimate battery SoH and explain the effects of the involved ultrasonic features of interest.
基金the National Natural Science Foundation of China (Grants No. 12072090 and No.12302056) to provide fund for conducting experiments。
文摘Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.
文摘Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
文摘Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed into the model. And the computational errors are corrected using statistical approaches. It involves a variety of aspects, including the uncertainty modeling, the measurement evaluation, the system model and the measurement model coupling ,the computation complexity, and the performance issue. Authors intend to set up the architecture of DDDS for wildfire spread model, DEVS-FIRE, based on the discrete event speeification (DEVS) formalism. The experimental results show that the framework can track the dynamically changing fire front based on fire sen- sor data, thus, it provides more aecurate predictions.
基金RPSEA and U.S.Department of Energy for partially funding this study
文摘Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.
基金supported by the National Key R&D Program of China(Grant No.2021YFC2100100)the National Natural Science Foundation of China(Grant No.21901157)+1 种基金the Shanghai Science and Technology Project of China(Grant No.21JC1403400)the SJTU Global Strategic Partnership Fund(Grant No.2020 SJTUHUJI)。
文摘The application scope and future development directions of machine learning models(supervised learning, transfer learning, and unsupervised learning) that have driven energy material design are discussed.
基金partially supported by the National Natural Science Foundation of China(Nos.61203095,61403407)。
文摘In this article,we develop an online robust actor-critic-disturbance guidance law for a missile-target interception system with limited normal acceleration capability.Firstly,the missiletarget engagement is formulated as a zero-sum pursuit-evasion game problem.The key is to seek the saddle point solution of the Hamilton Jacobi Isaacs(HJI)equation,which is generally intractable due to the nonlinearity of the problem.Then,based on the universal approximation capability of Neural Networks(NNs),we construct the critic NN,the actor NN and the disturbance NN,respectively.The Bellman error is adjusted by the normalized-least square method.The proposed scheme is proved to be Uniformly Ultimately Bounded(UUB)stable by Lyapunov method.Finally,the effectiveness and robustness of the developed method are illustrated through numerical simulations against different types of non-stationary targets and initial conditions.
文摘In this paper,a data-driven method to model the three-dimensional engineering structure under the cyclic load with the one-dimensional stress-strain data is proposed.In this method,one-dimensional stress-strain data obtained under uniaxial load and different loading history is learned offline by gate recurrent unit(GRU)network.The learned constitutive model is embedded into the general finite element framework through data expansion from one dimension to three dimensions,which can perform stress updates under the three-dimensional setting.The proposed method is then adopted to drive numerical solutions of boundary value problems for engineering structures.Compared with direct numerical simulations using the J2 plasticity model,the stress-strain response of beam structure with elastoplastic materials under forward loading,reverse loading and cyclic loading were predicted accurately.Loading path dependent response of structure was captured and the effectiveness of the proposed method is verified.The shortcomings of the proposed method are also discussed.
文摘A data driven computational model that accounts for more than two material states has been presented in this work. Presented model can account for multiple state variables, such as stresses,strains, strain rates and failure stress, as compared to previously reported models with two states.Model is used to perform deformation and failure simulations of carbon nanotubes and carbon nanotube/epoxy nanocomposites. The model capability of capturing the strain rate dependent deformation and failure has been demonstrated through predictions against uniaxial test data taken from literature. The predicted results show a good agreement between data set taken from literature and simulations.
文摘In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.
文摘In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-driven approach,using secure private cloud technology and virtualization technology.The platform has a general hardware and software architecture,which integrates the functions of graphical editing,automated testing,data processing,fault diagnosis and so on.It can realize multi-task parallel testing.Compared with the traditional test mode,the platform has obvious advantages on testing eficiency and effectiveness.
基金the Natural Key Research and Development Program of China(2018YFB1004902)the Natural Science Foundation of China(61772329,61373085).
文摘The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in computer graphics in recent years.First,we provide a brief introduction of physical based fluid simulation methods based on their spatial discretization,including Lagrangian,Eulerian,and hybrid methods.The characteristics of these underlying structures and their inherent connection with data driven methodologies are then analyzed.Subsequently,we review studies pertaining to a wide range of applications,including data-driven solvers,detail enhancement,animation synthesis,fluid control,and differentiable simulation.Finally,we discuss some related issues and potential directions in data-driven fluid simulation.We conclude that the fluid simulation combined with data-driven methods has some advantages,such as higher simulation efficiency,rich details and different pattern styles,compared with traditional methods under the same parameters.It can be seen that the data-driven fluid simulation is feasible and has broad prospects.
基金Research and Application of Key Technologies for Tight Gas Production Improvement and Rehabilitation of Linxing Shenfu(YXKY-ZL-01-2021)。
文摘Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.