期刊文献+
共找到1,202篇文章
< 1 2 61 >
每页显示 20 50 100
Data driven models for compressive strength prediction of concrete at high temperatures 被引量:1
1
作者 Mahmood AKBARI Vahid JAFARI DELIGANI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第2期311-321,共11页
The use of data driven models has been shown to be useful for simulating complex engineering processes,when the only information available consists of the data of the process.In this study,four data-driven models,name... The use of data driven models has been shown to be useful for simulating complex engineering processes,when the only information available consists of the data of the process.In this study,four data-driven models,namely multiple linear regression,artificial neural network,adaptive neural fuzzy inference system,and K nearest neighbor models based on collection of 207 laboratory tests,are investigated for compressive strength prediction of concrete at high temperature.In addition for each model,two different sets of input variables are examined:a complete set and a parsimonious set of involved variables.The results obtained are compared with each other and also to the equations of NIST Technical Note standard and demonstrate the suitability of using the data driven models to predict the compressive strength at high temperature.In addition,the results show employing the parsimonious set of input variables is sufficient for the data driven models to make satisfactory results. 展开更多
关键词 data driven model compressive strength oncrete high temperature
原文传递
Full field reservoir modeling of shale assets using advanced data-driven analytics 被引量:10
2
作者 Soodabeh Esmaili Shahab D.Mohaghegh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期11-20,共10页
Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorpt... Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset. 展开更多
关键词 Reservoir modeling data driven reservoir modeling Top-down modeling Shale reservoir modelING SHALE
在线阅读 下载PDF
Product Data Model for Performance-driven Design 被引量:2
3
作者 Guang-Zhong Hu Xin-Jian Xu +2 位作者 Shou-Ne Xiao Guang-Wu Yang Fan Pu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1112-1122,共11页
When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency... When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design. 展开更多
关键词 Complex product design Performance driven data model Mapping relationship High-speed train
在线阅读 下载PDF
Data-driven Nonparametric Model Adaptive Precision Control for Linear Servo Systems 被引量:2
4
作者 Rong-Min Cao Zhong-Sheng Hou Hui-Xing Zhou 《International Journal of Automation and computing》 EI CSCD 2014年第5期517-526,共10页
Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo... Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo system. The controller design requires no information about the structure of linear servo system, and it is based on the estimation and forecasting of the pseudo-partial derivatives(PPD) which are estimated according to the voltage input and position output of the linear motor. The characteristics and operational mechanism of the permanent magnet synchronous linear motor(PMSLM) are introduced, and the proposed nonparametric model control strategy has been compared with the classic proportional-integral-derivative(PID) control algorithm. Several real-time experiments on the motion control system incorporating a permanent magnet synchronous linear motor showed that the nonparametric model adaptive control method improved the system s response to disturbances and its position-tracking precision, even for a nonlinear system with incompletely known dynamic characteristics. 展开更多
关键词 data-driven control nonparametric model adaptive control precision motion control permanent magnet synchronous linear motor ROBUSTNESS
原文传递
Data-Driven Model Identification and Control of the Inertial Systems
5
作者 Irina Cojuhari 《Intelligent Control and Automation》 2023年第1期1-18,共18页
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy... In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation. 展开更多
关键词 data-driven model Identification Controller Tuning Undamped Transient Response Closed-Loop System Identification PID Controller
在线阅读 下载PDF
A Data-Driven Simulation Model for China Haze Monitor and Governance
6
作者 Xiaoyan Lu Hong Chen +1 位作者 Miao Wang Zhengying Cai 《World Journal of Engineering and Technology》 2016年第2期374-381,共8页
Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensi... Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensional evaluation system is built to evaluate the government performance of China haze. Second, a data-driven model is employed to reveal the operation mechanism of China’s haze and is described as a multi input and multi output system. Third, a prototype system is set up to verify the proposed scheme, and the result provides us with a graphical tool to monitor different haze control strategies. 展开更多
关键词 data-driven Haze Monitor MIMO Simulation model
在线阅读 下载PDF
A Data-Driven Car-Following Model Based on the Random Forest
7
作者 Huili Shi Tingli Wang +3 位作者 Fusheng Zhong Hanqing Wang Junyan Han Xiaoyuan Wang 《World Journal of Engineering and Technology》 2021年第3期503-515,共13页
The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare... The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators. 展开更多
关键词 Traffic Flow Car-Following model data-driven Method Random Forest Intelligent Transportation System
在线阅读 下载PDF
Performance Monitoring of the Data-driven Subspace Predictive Control Systems Based on Historical Objective Function Benchmark 被引量:3
8
作者 王陆 李柠 李少远 《自动化学报》 EI CSCD 北大核心 2013年第5期542-547,共6页
关键词 预测控制系统 性能监控 数据驱动 子空间 历史 基准 监视控制器 目标函数
在线阅读 下载PDF
Data-driven computing in elasticity via kernel regression 被引量:2
9
作者 Yoshihiro Kanno 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第6期361-365,I0003,共6页
This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to o... This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to obtain a static equilibrium state of an elastic structure. Preliminary numerical experiments illustrate that, compared with existing methods, the proposed method finds a reasonable solution even if data points distribute coarsely in a given material data set. 展开更多
关键词 data-driven computational mechanics model-free method Nonparametric method Kernel regression Nadaraya–Watson estimator
在线阅读 下载PDF
DATA DRIVEN控制方式图象理解系统的结构性能及改进
10
作者 李力 《北方工业大学学报》 1989年第3期78-82,共5页
本文是以图象理解系统实例分析入手,较详尽地论述了采用DATADRIVEN控制方式的线画解释图象理解系统的硬软件结构,并在评估了系统的可靠性基础上,提出了采用数据驱动和模型驱动双向控制的新观点.
关键词 图象理解 双向控制 结画解释
在线阅读 下载PDF
Data driven composite shape descriptor design for shape retrieval with a VoR-Tree
11
作者 WANG Zi-hao LIN Hong-wei XU Chen-kai 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2018年第1期88-106,共19页
We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as... We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as the computation of the union of two events, i.e.,retrieving similar shapes by using a single scale-based shape descriptor. The pair of scale-based shape descriptors with the highest probability forms the composite shape descriptor. Given a shape database, the composite shape descriptors for the shapes constitute a planar point set.A VoR-Tree of the planar point set is then used as an indexing structure for efficient query operation. Experiments and comparisons show the effectiveness and efficiency of the proposed composite shape descriptor. 展开更多
关键词 shape descriptor shape retrieval shape analysis data-driven model
在线阅读 下载PDF
Performance of a data-driven technique applied to changes in wave height and its effect on beach response 被引量:1
12
作者 José M.Horrillo-Caraballo Harshinie Karunarathna +1 位作者 Shun-qi Pan Dominic Reeve 《Water Science and Engineering》 EI CAS CSCD 2016年第1期42-51,共10页
In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the ea... In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA) was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morohological resoonse, which is primarily driven by the intermittent larger storm waves. 展开更多
关键词 Beach profile Canonical correlation analysis data-driven technique Empirical orthogonal function FORECAST Statistical model Wave height threshold
在线阅读 下载PDF
A Data-Driven Adaptive Method for Attitude Control of Fixed-Wing Unmanned Aerial Vehicles 被引量:2
13
作者 Meili Chen Yuan Wang 《Advances in Aerospace Science and Technology》 2019年第1期1-15,共15页
In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of... In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of fixed-wing unmanned aerial vehicles (UAVs). Firstly, a model-free adaptive control (MFAC) method requiring only input/output (I/O) data and no model information is adopted for control scheme design of angular velocity subsystem which contains all model information and up-mentioned uncertainties. Secondly, the internal model control (IMC) method featured with less tuning parameters and convenient tuning process is adopted for control scheme design of the certain Euler angle subsystem. Simulation results show that, the method developed is obviously superior to the cascade PID (CPID) method and the nonlinear dynamic inversion (NDI) method. 展开更多
关键词 data-driven Adaptive Method ATTITUDE CONTROL Unmanned AERIAL Vehicles (UAV) Internal model CONTROL
在线阅读 下载PDF
基于全流程仿真机理数据的城市固废焚烧过程尾气排放建模与分析
14
作者 汤健 王天峥 +4 位作者 夏恒 陈佳昆 梁永琪 庄家宾 乔俊飞 《北京工业大学学报》 北大核心 2026年第1期41-54,共14页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程中“布风布料”操作变量与尾气排放气体间的精确机理模型难以构建的问题,提出了基于全流程仿真机理数据的MSWI过程尾气排放建模与分析方法。首先,在进行面向操作变量与... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程中“布风布料”操作变量与尾气排放气体间的精确机理模型难以构建的问题,提出了基于全流程仿真机理数据的MSWI过程尾气排放建模与分析方法。首先,在进行面向操作变量与尾气排放的工艺流程描述的基础上,耦合流体动力焚烧代码(fluid dynamic incinerator code,FLIC)、Fluent和Aspen Plus这3种数值仿真软件对MSWI过程所包含的炉排固相燃烧、炉内气相燃烧、余热交换与烟气处理等阶段进行全流程模拟,进而获得基准运行工况下的数值仿真模型;接着,面向操作变量进行正交实验设计和实验实施,获得多种运行工况下仿真机理数据;最后,构建以操作变量为输入、以主要尾气排放为输出的基于多入多出线性回归决策树(multiple-input multiple-output least regression decision tree,MIMO-LRDT)的尾气排放模型,并分别采用单因素和双因素法可视化分析两者间的映射关系。采用面向北京某MSWI厂构建的数值仿真和数据驱动模型验证了所提方法的有效性。 展开更多
关键词 城市固废焚烧过程 尾气排放建模 数值仿真模型 仿真机理数据 数据驱动模型 多入多出线性回归决策树
在线阅读 下载PDF
DataTurbo:一种插件化数据交换与集成工具
15
作者 钱正平 齐德昱 《计算机应用研究》 CSCD 北大核心 2009年第10期3770-3773,3777,共5页
介绍了笔者研发的一种基于统一数据模型和扩展数据流模型实现的插件化数据交换和集成工具DataTurbo,它以示例驱动的界面引导用户将可配置的功能插件快速、灵活地组合构成数据流程,实现自动、稳健和高效的数据物化集成。统一数据模型降... 介绍了笔者研发的一种基于统一数据模型和扩展数据流模型实现的插件化数据交换和集成工具DataTurbo,它以示例驱动的界面引导用户将可配置的功能插件快速、灵活地组合构成数据流程,实现自动、稳健和高效的数据物化集成。统一数据模型降低了以往ETL工具使用中由数据存储格式和语义差异造成的复杂性,同时提高了插件和工具的可扩展性。扩展数据流模型支持流程事务的定义和基于共享状态的异步事件响应,前者通过模型变换,为流程添加易于理解的控制信息;后者允许系统快速响应异常事件。DataTurbo已经成功部署并服务于广州市番禺区、南沙区数据中心。 展开更多
关键词 数据集成 插件化 数据流 数据模型 示例驱动
在线阅读 下载PDF
AI Graf Compounder在橡胶配方开发模拟中的应用研究
16
作者 章羽(编译) 《橡塑技术与装备》 2026年第1期76-81,共6页
本文探讨了AI Graf Compounder软件在橡胶配方开发中的应用。该系统基于前馈神经网络,能够根据成分预测材料性能,显著减少物理测试需求并加快研发进程。研究通过多个案例验证了其在EPDM、天然橡胶等配方中的预测准确性,强调高质量结构... 本文探讨了AI Graf Compounder软件在橡胶配方开发中的应用。该系统基于前馈神经网络,能够根据成分预测材料性能,显著减少物理测试需求并加快研发进程。研究通过多个案例验证了其在EPDM、天然橡胶等配方中的预测准确性,强调高质量结构化数据(尤其是实验设计数据)对模拟结果的重要性。人工智能与结构化实验设计的结合,为橡胶行业提供了更高效、数据驱动的开发路径。 展开更多
关键词 人工智能 橡胶配方开发 神经网络 实验设计 数据驱动模型
在线阅读 下载PDF
基于线损监测的光伏功率预测系统设计
17
作者 郭瑞康 魏渊博 《计算机应用文摘》 2026年第1期101-103,共3页
围绕光伏发电系统中功率预测的关键问题,提出了一种基于线损监测的光伏功率预测系统设计方案。该方案通过实时监测输电线路的线损变化,结合光伏组件运行特性和环境因素,实现对光伏功率的高精度预测。通过引入数据驱动模型和物理机理模... 围绕光伏发电系统中功率预测的关键问题,提出了一种基于线损监测的光伏功率预测系统设计方案。该方案通过实时监测输电线路的线损变化,结合光伏组件运行特性和环境因素,实现对光伏功率的高精度预测。通过引入数据驱动模型和物理机理模型的融合方法,系统能够有效提升预测的准确性与鲁棒性。实验结果表明,该方案在短期光伏功率预测方面具有显著优势。 展开更多
关键词 光伏发电 功率预测 线损监测 数据驱动模型 机理模型
在线阅读 下载PDF
基于PDCA-DMAIC整合模型的企业文化落地路径研究
18
作者 邵冰 康志方 庞鹤翔 《商业观察》 2026年第2期65-67,74,共4页
企业文化落地是将核心价值观转化为员工行为与组织效能的关键环节。文章基于PDCA循环与六西格玛DMAIC模型的整合框架,构建了包含5个阶段的企业文化落地整合模型。实证研究表明,PDCA-DMAIC整合模型通过建立双向反馈机制和系统化的流程设... 企业文化落地是将核心价值观转化为员工行为与组织效能的关键环节。文章基于PDCA循环与六西格玛DMAIC模型的整合框架,构建了包含5个阶段的企业文化落地整合模型。实证研究表明,PDCA-DMAIC整合模型通过建立双向反馈机制和系统化的流程设计,有效解决了文化落地过程中的认知偏差和效果持续性不足等问题,为企业文化从形式化落地到实质性嵌入提供了可操作的方法论支持。研究认为,企业应建立文化落地的战略引领体系,构建长效运行机制,实现文化理念的可操作化转化。 展开更多
关键词 企业文化落地 PDCA-DMAIC整合模型 数据驱动 五阶段路径 行为转化
在线阅读 下载PDF
On the uncertainty of interwell connectivity estimations from the capacitance-resistance model 被引量:5
19
作者 Gustavo A Moreno Larry W Lake 《Petroleum Science》 SCIE CAS CSCD 2014年第2期265-271,共7页
The capacitance-resistance model (CRM) is an alternative to conventional reservoir simulation. CRM, a simplification of complex numerical models, uses production and injection rates to infer a reservoir description.... The capacitance-resistance model (CRM) is an alternative to conventional reservoir simulation. CRM, a simplification of complex numerical models, uses production and injection rates to infer a reservoir description. There is no prior geologic model. The principal output of CRM fitting is the fraction of injected fluid (usually water) that is produced at a producer at steady-state. These fractions are interwell connectivities. Interwell connectivities are fundamental information needed to manage waterfloods in oil reservoirs. The data-driven CRM is a fast tool to estimate these parameters in mature fields and allows one to make full use of the dynamic data available. This paper considers the problem of setting an upper bound on the uncertainty of interwell connectivities for linear-constrained models. Using analytical bounds and numerical simulations, we derive a consistent upper limit on the uncertainty of interwell connections that can be used to quantify the information content of a given dataset. 展开更多
关键词 data-driven models capacitance-resistance model secondary recovery waterfloodoptimization interwell connectivities
原文传递
Model and Data Hybrid Driven Approach for Quantifying the Meteorology-Dependent Demand Flexibility of Building Thermal Loads
20
作者 Bo Hu Xin Cheng +5 位作者 Changzheng Shao Tao Niu Chunyan Li Yue Sun Wei Huang Kaigui Xie 《CSEE Journal of Power and Energy Systems》 2025年第1期394-405,共12页
Recently, the heat and electricity integrated energy system (HE-IES) has become a hot topic in both industry and academia. In the HE- IES, the potential flexibility of the buildings' thermal loads can be exploited... Recently, the heat and electricity integrated energy system (HE-IES) has become a hot topic in both industry and academia. In the HE- IES, the potential flexibility of the buildings' thermal loads can be exploited to relax the heat power balance constraints and consequently allow a more flexible operation of the combined heat and power units. In this paper, model-driven and data-driven techniques are combined to quantify the demand flexibility of the buildings' thermal loads in a non-instructive way. First, the explicit analytical equivalent thermal parameter (ETP) model of the aggregated buildings is developed. The heat transfer coefficient (k) and thermal inertia coefficient (C) of the ETP model are designated to measure the potential demand flexibility. Second, the Particle Swarm Optimization optimized Radial Basis Function neural network (PSO-RBF) is used to identify the relationship between the values of k and C and the meteorological factors. To obtain the training data, an innovative two-stage regression method based on the adaptive temporal resolution is proposed to extract k and C values from the historical thermal load data. Finally, a flexible thermal load model is built based on the predictions of the meteorological factors, which can be conveniently incorporated into the online dispatch of the HE-IES. A comprehensive simulation environment is designed to verify the accuracy and availability of the proposed technique. 展开更多
关键词 Flexibility of buildings'thermal loads heat and electricity integrated energy system meteorological factors model and data hybrid driven
原文传递
上一页 1 2 61 下一页 到第
使用帮助 返回顶部