期刊文献+
共找到1,309篇文章
< 1 2 66 >
每页显示 20 50 100
Direction-of-arrival estimation based on direct data domain (D3) method 被引量:2
1
作者 Chen Hui Huang Benxiong +1 位作者 Wang Yongliang Hou Yaoqiong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期512-518,共7页
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two... A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique. 展开更多
关键词 direction-of-arrival estimation space-time two-dimensional DOA direct data domain de-correlation.
在线阅读 下载PDF
Direct data domain approach to space-time adaptive processing 被引量:2
2
作者 Wen Xiaoqin Han Chongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期59-64,共6页
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi... In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment. 展开更多
关键词 space-time adaptive processing direct data domain interference suppression.
在线阅读 下载PDF
A ROBUST PHASE-ONLY DIRECT DATA DOMAIN ALGORITHM BASED ON GENERALIZED RAYLEIGH QUOTIENT OPTIMIZATION USING HYBRID GENETIC ALGORITHM 被引量:2
3
作者 Shao Wei Qian Zuping Yuan Feng 《Journal of Electronics(China)》 2007年第4期560-566,共7页
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ... A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA. 展开更多
关键词 Generalized Rayleigh quotient Hybrid genetic algorithm Phase-only optimization Direct data domain Least Squares (D^3LS) algorithm Nelder-Mead simplex algorithm
在线阅读 下载PDF
Incorporating Domain Knowledge into Data Mining Process:An Ontology Based Framework 被引量:5
4
作者 PAN Ding SHEN Jun-yi ZHOU Mu-xin 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期165-169,共5页
With the explosive growth of data available, there is an urgent need to develop continuous data mining which reduces manual interaction evidently. A novel model for data mining is proposed in evolving environment. Fir... With the explosive growth of data available, there is an urgent need to develop continuous data mining which reduces manual interaction evidently. A novel model for data mining is proposed in evolving environment. First, some valid mining task schedules are generated, and then au tonomous and local mining are executed periodically, finally, previous results are merged and refined. The framework based on the model creates a communication mechanism to in corporate domain knowledge into continuous process through ontology service. The local and merge mining are transparent to the end user and heterogeneous data ,source by ontology. Experiments suggest that the framework should be useful in guiding the continuous mining process. 展开更多
关键词 continuous data mining domain knowledge ONTOLOGY FRAMEWORK
在线阅读 下载PDF
Cost-Aware Multi-Domain Virtual Data Center Embedding 被引量:1
5
作者 Xiao Ma Zhongbao Zhang Sen Su 《China Communications》 SCIE CSCD 2018年第12期190-207,共18页
Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In dat... Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In data centers, energy issue is very important for the reality that data center energy consumption has increased by dozens of times in the last decade. In this paper, we are concerned about the cost-aware multi-domain virtual data center embedding problem. In order to solve this problem, this paper first addresses the energy consumption model. The model includes the energy consumption model of the virtual machine node and the virtual switch node, to quantify the energy consumption in the virtual data center embedding process. Based on the energy consumption model above, this paper presents a heuristic algorithm for cost-aware multi-domain virtual data center embedding. The algorithm consists of two steps: inter-domain embedding and intra-domain embedding. Inter-domain virtual data center embedding refers to dividing virtual data center requests into several slices to select the appropriate single data center. Intra-domain virtual data center refers to embedding virtual data center requests in each data center. We first propose an inter-domain virtual data center embedding algorithm based on label propagation to select the appropriate single data center. We then propose a cost-aware virtual data center embedding algorithm to perform the intra-domain data center embedding. Extensive simulation results show that our proposed algorithm in this paper can effectively reduce the energy consumption while ensuring the success ratio of embedding. 展开更多
关键词 virtual data CENTER EMBEDDING MULTI-domain cost-aware LABEL PROPAGATION
在线阅读 下载PDF
A Model-free Approach to Fault Detection of Continuous-time Systems Based on Time Domain Data
6
作者 Steven X. Ding 《International Journal of Automation and computing》 EI 2007年第2期189-194,共6页
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to d... In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals. 展开更多
关键词 Fault detection linear continuous time-invariant systems time domain data subspace methods observer-based residual generator
在线阅读 下载PDF
Domain-oriented data-driven data mining:a new understanding for data mining
7
作者 WANG Guo-yin WANG Yan 《重庆邮电大学学报(自然科学版)》 2008年第3期266-271,共6页
Recent advances in computing,communications,digital storage technologies,and high-throughput data-acquisition technologies,make it possible to gather and store incredible volumes of data.It creates unprecedented oppor... Recent advances in computing,communications,digital storage technologies,and high-throughput data-acquisition technologies,make it possible to gather and store incredible volumes of data.It creates unprecedented opportunities for large-scale knowledge discovery from database.Data mining is an emerging area of computational intelligence that offers new theories,techniques,and tools for processing large volumes of data,such as data analysis,decision making,etc.There are many researchers working on designing efficient data mining techniques,methods,and algorithms.Unfortunately,most data mining researchers pay much attention to technique problems for developing data mining models and methods,while little to basic issues of data mining.In this paper,we will propose a new understanding for data mining,that is,domain-oriented data-driven data mining(3DM)model.Some data-driven data mining algorithms developed in our Lab are also presented to show its validity. 展开更多
关键词 粗糙集 或然率 数据处理 计算方法
在线阅读 下载PDF
Domain-Oriented Data-Driven Data Mining Based on Rough Sets 被引量:1
8
作者 Guoyin Wang 《南昌工程学院学报》 CAS 2006年第2期46-46,共1页
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data... Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world. 展开更多
关键词 data mining data-DRIVEN USER-DRIVEN domain-driven KDD Machine Learning Knowledge Acquisition rough sets
在线阅读 下载PDF
数据要素场技术体系及工程实践 被引量:2
9
作者 吴曼青 洪日昌 +7 位作者 王佐成 林传文 马韵洁 郭嘉丰 吴乐 范举 张兰 王翔 《中国工程科学》 北大核心 2025年第1期51-62,共12页
将数据作为新的生产要素,是我国在精准把握和研判全球科技发展规律下提出的重大理论创新。以数据要素市场化配置改革为主线,培育全国一体化数据市场,促进数据要素开发利用,是我国数据要素创新发展的总体纲领。本文围绕数据要素市场化配... 将数据作为新的生产要素,是我国在精准把握和研判全球科技发展规律下提出的重大理论创新。以数据要素市场化配置改革为主线,培育全国一体化数据市场,促进数据要素开发利用,是我国数据要素创新发展的总体纲领。本文围绕数据要素市场化配置改革,聚焦推动数据要素流通和数据要素价值释放,提出探索数据要素价值时空分布的内在机理即数据场基础理论,探讨了在深入研究数据场基础理论的同时,构建涵盖数据要素流通全生命周期的数据要素场技术体系,具体包括跨域数据管理技术、数据件封装技术、低熵化流通技术、穿透式安全技术和聚变式处理技术。同时,分析了数据要素场在卫生健康场景中的工程实践案例,提出了数据要素场的创新应用场景和工程实践范式,展望了数据场基础理论和数据要素场关键技术、工程实践、生态构建方面的前景,旨在为数据场的发展提供理论基础和实践指导,推动数字经济和社会治理的现代化。 展开更多
关键词 数据场 跨域数据管理 数据件封装 低熵化流通 穿透式安全 聚变式处理技术
在线阅读 下载PDF
Quality Assessment of Training Data with Uncertain Labels for Classification of Subjective Domains
10
作者 Ying Dai 《Journal of Computer and Communications》 2017年第7期152-168,共17页
In order to improve the performance of classifiers in subjective domains, this paper defines a metric to measure the quality of the subjectively labelled training data (QoSTD) by means of K-means clustering. Then, the... In order to improve the performance of classifiers in subjective domains, this paper defines a metric to measure the quality of the subjectively labelled training data (QoSTD) by means of K-means clustering. Then, the QoSTD is used as a weight of the predicted class scores to adjust the likelihoods of instances. Moreover, two measurements are defined to assess the performance of the classifiers trained by the subjective labelled data. The binary classifiers of Traditional Chinese Medicine (TCM) Zhengs are trained and retrained by the real-world data set, utilizing the support vector machine (SVM) and the discrimination analysis (DA) models, so as to verify the effectiveness of the proposed method. The experimental results show that the consistency of likelihoods of instances with the corresponding observations is increased notable for the classes, especially in the cases with the relatively low QoSTD training data set. The experimental results also indicate the solution how to eliminate the miss-labelled instances from the training data set to re-train the classifiers in the subjective domains. 展开更多
关键词 Quality Assessment SUBJECTIVE domain Multimodal Sensor data LABEL Noise LIKELIHOOD ADJUSTING TCM ZHENG
暂未订购
Application of Frequency-Domain Waveform Inversion Method in Marmousi Shots Data
11
作者 WANG Meng ZHANG Dong +2 位作者 YAO Di QIN Qianqing XU Lin 《Wuhan University Journal of Natural Sciences》 CAS 2012年第4期326-330,共5页
Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse ... Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse matrix factorization, combined with nine-point finite-difference for the linear system of equations. In the waveform inversion, we use preconditioned gradient method where the preconditioner is provided by the diagonal of the approximate Hessian matrix. We successfully applied waveform inversion method from low to high frequency in two sets of Marmousi data. One is the data set generated by frequencydomain finite-difference modeling, and the other is the original Marmousi shots data set. The former result is very close to the true velocity model. In the original shots data set inversion, we replace the prior source with estimated source; the result is also acceptable, and consistent with the true model. 展开更多
关键词 preconditioned gradient method frequency-domain waveform inversion Marmousi shots data
原文传递
Building a Productive Domain-Specific Cloud for Big Data Processing and Analytics Service
12
作者 Yuzhong Yan Mahsa Hanifi +1 位作者 Liqi Yi Lei Huang 《Journal of Computer and Communications》 2015年第5期107-117,共11页
Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open sour... Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open source frameworks in Cloud Computing for storing and processing big data in the scalable fashion. Spark is the latest parallel computing engine working together with Hadoop that exceeds MapReduce performance via its in-memory computing and high level programming features. In this paper, we present our design and implementation of a productive, domain-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s productivity, we created a variety of data processing templates to simplify the programming efforts. We have conducted experiments for its productivity and performance with a few basic but representative data processing algorithms in the petroleum industry. Geophysicists can use the platform to productively design and implement scalable seismic data processing algorithms without handling the details of data management and the complexity of parallelism. The Cloud platform generates a complete data processing application based on user’s kernel program and simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop. 展开更多
关键词 BUILDING a Productive domain-Specific CLOUD for BIG data PROCESSING and ANALYTICS SERVICE
在线阅读 下载PDF
基于加权子域自适应对抗网络的齿轮箱变工况故障诊断
13
作者 张慧云 左芳君 +1 位作者 余熹 杨婷 《机械强度》 北大核心 2025年第3期96-103,共8页
实际工程中齿轮箱受复杂多变的运行环境影响,导致单一振动信号难以准确有效地表征齿轮箱在不同工况下的故障信息。为此,提出了一种基于加权子域自适应对抗网络的齿轮箱变工况故障诊断方法。首先,采用多源异构信号融合策略,将振动信号时... 实际工程中齿轮箱受复杂多变的运行环境影响,导致单一振动信号难以准确有效地表征齿轮箱在不同工况下的故障信息。为此,提出了一种基于加权子域自适应对抗网络的齿轮箱变工况故障诊断方法。首先,采用多源异构信号融合策略,将振动信号时频图、电流信号格拉姆矩阵和红外热力图转换为多通道数据集,从不同视角描述齿轮箱运行状态;其次,构建嵌入高效通道注意力机制(Efficient Channel Attention,ECA)的自校正卷积神经网络(Self-calibrated Convolutions Network,SCNet)作为特征提取器,动态调整多源异构信号间相互作用和依赖关系,平衡源域和目标域的多源异构数据间尺度差异;再次,在特征提取器和域判别器进行对抗训练的同时,引入最大均值差异(Maximum Mean Discrepancy,MMD)和线性判别分析(Linear Discriminant Analysis,LDA)衡量当前跨域任务特征表示的域对齐程度及诊断任务决策边界,并构造动态平衡因子实时调整域对齐损失和类分辨性损失,有效地对齐源域和目标域每个类空间。最后,通过采集的齿轮箱变工况故障数据集进行验证。结果表明,所提方法在不同工况的诊断精度均达到95%以上,证明了所提方法的可行性和有效性。 展开更多
关键词 齿轮箱 不同工况 故障诊断 数据融合 域自适应
在线阅读 下载PDF
基于改进生成对抗网络的网络可信数据跨域交换研究
14
作者 董婕 《微型电脑应用》 2025年第3期239-242,250,共5页
跨域数据交换在支持不同规模的数据交换需求时,须随着业务的发展和数据量的增长而进行相应扩展和升级,导致数据交换开销及泄漏程度增加。对此,提出基于改进生成对抗网络的网络可信数据跨域交换方法。利用改进生成对抗网络进行网络数据校... 跨域数据交换在支持不同规模的数据交换需求时,须随着业务的发展和数据量的增长而进行相应扩展和升级,导致数据交换开销及泄漏程度增加。对此,提出基于改进生成对抗网络的网络可信数据跨域交换方法。利用改进生成对抗网络进行网络数据校正,去除无价值信息,保证在可信数据交换过程中减少空间资浪的费源;基于修正后的网络数据进行可信度计算,以降低数据安全风险;对网络可信数据进行加密并存储,保证数据在交换过程中不被篡改,实现高性能的网络可信数据跨域交换。实验结果显示,所提方法的空间开销最高仅为3 MB,数据泄露比最高仅为1.33%,数据交换吞吐量最高为46.1 bps,表明所提方法在数据跨域交换中具有较好的应用性能。 展开更多
关键词 数据共享 改进生成对抗网络 可信数据 数据跨域交换 可信度
在线阅读 下载PDF
基于大语言模型技术的古籍限定域关系抽取及应用研究 被引量:6
15
作者 刘畅 张琪 +4 位作者 王东波 沈思 吴梦成 刘浏 苏雨诗 《情报学报》 北大核心 2025年第2期200-219,共20页
古籍文本中的细粒度知识单元的自动抽取和结构化能够为群体传记、历史地图等古籍数字人文研究提供数据基础。基于判别式模型的抽取方法严重受制于古汉语本身语义的复杂性和训练样本的缺失,抽取效果和领域迁移的效果受到影响,相关研究亟... 古籍文本中的细粒度知识单元的自动抽取和结构化能够为群体传记、历史地图等古籍数字人文研究提供数据基础。基于判别式模型的抽取方法严重受制于古汉语本身语义的复杂性和训练样本的缺失,抽取效果和领域迁移的效果受到影响,相关研究亟待生成式人工智能技术的赋能。本研究探索了基于大语言模型的古籍领域限定域关系抽取方法和高质量训练语料自动生成方法。通过比较不同提示模板对模型抽取性能的影响,证明了微调方法对模型性能提升具有显著价值。基于ChatGPT4的API服务,结合自指令、思维链与人类反馈合成古籍限定域关系抽取数据集,在数据增强后于两种古籍关系抽取数据集上分别取得56.07%和30.50%的F1值,迁移能力较两种使用全部数据训练的模型均取得了显著提升。本研究还探索了协同使用自指令模型和自动评价模型合成训练语料和评价信息,并基于合成数据训练模型,有效缓解了训练数据不足的问题。研究结果表明,使用大语言模型抽取关系三元组与合成训练数据,能够显著降低过往限定域关系抽取的人力成本,有助于提升古籍领域知识图谱的构建效率。 展开更多
关键词 大语言模型 古籍智能 限定域关系抽取 AI生成数据 数字人文
在线阅读 下载PDF
高架桥车辆行驶引起的环境振动研究
16
作者 万曦 代剑英 吴芳 《山西建筑》 2025年第2期154-157,共4页
随着高科技产业的快速发展,对精密工程结构中产品质量的要求日益提高,其中微振动控制成为关键因素。针对西安某微电子厂房建设项目,考虑到周边高速公路高架桥对拟建场地可能产生的微振动影响,进行了详细的现场测试与分析。通过布置测点... 随着高科技产业的快速发展,对精密工程结构中产品质量的要求日益提高,其中微振动控制成为关键因素。针对西安某微电子厂房建设项目,考虑到周边高速公路高架桥对拟建场地可能产生的微振动影响,进行了详细的现场测试与分析。通过布置测点,采用高灵敏度振动传感器和数据采集系统,记录了南北、东西和垂直方向的振动速度。测试结果表明,高速公路高架桥的微振动水平处于VC-D—VC-C之间,可为芯片厂房的选址和隔振设计提供科学依据,对类似精密工程结构的防微振设计具有参考意义。 展开更多
关键词 隔振设计 微振动 频域分析 数据采集
在线阅读 下载PDF
大语言模型和知识图谱协同的跨域异质数据查询框架 被引量:6
17
作者 吴文隆 尹海莲 +7 位作者 王宁 徐梦飞 赵鑫喆 殷崭祚 刘元睿 王昊奋 丁岩 李博涵 《计算机研究与发展》 北大核心 2025年第3期605-619,共15页
大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和... 大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和知识图谱(knowledge graph,KG)协同的跨域异质数据查询框架,在LLM+KG的范式下给出跨域异质数据查询的一个治理方案.为确保LLM能够适应多场景中的跨域异质数据,首先采用适配器对跨域异质数据进行融合,并构建相应的知识图谱.为提高查询效率,引入线性知识图,并提出同源知识图抽取算法HKGE来实现知识图谱的重构,可显著提高查询性能,确保跨域异质数据治理的高效性.进而,为保证多域数据查询的高可信度,提出可信候选子图匹配算法Trust HKGM,用于检验跨域同源数据的置信度计算和可信候选子图匹配,剔除低质量节点.最后,提出基于线性知识图提示的多域数据查询算法MKLGP,实现LLM+KG范式下的高效可信跨域查询.该方法在多个真实数据集上进行了广泛实验,验证了所提方法的有效性和高效性. 展开更多
关键词 大语言模型 跨域异质数据 知识图谱 多域数据查询 数据治理
在线阅读 下载PDF
融合领域知识和集成模型的挤压铸造工艺数据正确性检测方法
18
作者 邓建新 吴秀松 +1 位作者 李修明 尹政 《特种铸造及有色合金》 北大核心 2025年第9期1281-1290,共10页
为构建高质量的挤压铸造工艺数据集,保证数据驱动模型的质量,针对多源挤压铸造工艺数据存在的异常数据问题,提出了融合挤压铸造领域工程知识,集成多个检测模型的数据正确性检测方法。首先结合挤压铸造工程知识构建挤压铸造工艺数据属性... 为构建高质量的挤压铸造工艺数据集,保证数据驱动模型的质量,针对多源挤压铸造工艺数据存在的异常数据问题,提出了融合挤压铸造领域工程知识,集成多个检测模型的数据正确性检测方法。首先结合挤压铸造工程知识构建挤压铸造工艺数据属性值取值规则,建立基于属性取值规则的异常判定模型;然后基于集成学习思想,使用投票法建立基于局部离群因子、箱型图和孤立森林模型的挤压铸造工艺数据的异常集成检测模型,并与属性值取值规则结合形成两阶段检测方法,实现对挤压铸造工艺数据集从工程知识和数据特征两个维度的数据正确性检测。结果表明,所提出的方法提高了泛化能力,能对挤压铸造工艺数据集中的异常数据进行有效识别,平均召回率达95%。 展开更多
关键词 挤压铸造 数据正确性 异常检测 领域知识 集成模型
原文传递
融合CNN-GRU和Transformer的网络入侵检测方法
19
作者 黄迎春 邢秀祺 《火力与指挥控制》 北大核心 2025年第6期21-27,共7页
随着网络技术的快速发展及其在军事领域的广泛应用,入侵检测技术对系统安全起着重要作用。针对传统入侵检测数据集类别不平衡问题,提出一种融合卷积门控循环单元(CNN-GRU)和基于自注意力机制的神经网络模型(Transformer)的网络入侵检测... 随着网络技术的快速发展及其在军事领域的广泛应用,入侵检测技术对系统安全起着重要作用。针对传统入侵检测数据集类别不平衡问题,提出一种融合卷积门控循环单元(CNN-GRU)和基于自注意力机制的神经网络模型(Transformer)的网络入侵检测方法CGT(CNN-GRU Transformer),该方法针对双向长短期记忆网络(LSTM)只考虑时序特征而忽略空间特征且参数较多的特点优化入侵检测技术,融合过-欠采样与Wasserstein生成对抗网络的数据平衡处理模型NBW(Neighbourhood-cleaning-rule borderline-SMOTE WGAN)对数据集进行平衡处理。实验结果证明,所提出的方法在NSL-KDD数据集上表现出较好的效果,有效提升了入侵检测性能。 展开更多
关键词 入侵检测 卷积门控循环单元 数据平衡处理 领域清理规则 神经网络
在线阅读 下载PDF
知识-数据驱动的地质冶金学建模方法
20
作者 陈进 徐万红 +3 位作者 张丽 邓浩 毛先成 王国栋 《中国有色金属学报》 北大核心 2025年第7期2522-2537,共16页
提出了一种知识-数据驱动的地质冶金学建模方法,以克服单纯数据驱动建模地质可解释性不足的问题。该建模方法基于普通克里格法构建地质冶金学变量空间分布模型,通过高斯混合模型提取地质冶金学变量特征,引入马尔可夫随机场量化地质冶金... 提出了一种知识-数据驱动的地质冶金学建模方法,以克服单纯数据驱动建模地质可解释性不足的问题。该建模方法基于普通克里格法构建地质冶金学变量空间分布模型,通过高斯混合模型提取地质冶金学变量特征,引入马尔可夫随机场量化地质冶金学矿域的空间相关性特征,采用贝叶斯理论将二者集成,构建数据驱动的地质冶金学矿域划分模型,最后融入矿山生产知识经验,引导和约束划分过程。此外,该建模方法采用地质冶金学变量空间分布建模和矿域划分迭代优化的策略以提升模型精度。白云鄂博矿建模应用本文方法,划分了7个地质冶金学矿域。对比实验表明,相较于高斯混合模型和K-means聚类方法的结果,该建模方法提升了地质冶金学矿域的空间连贯性和地质可解释性,能为矿山精细化开发及多矿种综合利用的转型提供具有实践指导价值的信息支持。 展开更多
关键词 数据驱动 知识驱动 地质冶金学建模 矿域 精细化开采
在线阅读 下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部