期刊文献+
共找到1,328篇文章
< 1 2 67 >
每页显示 20 50 100
Direction-of-arrival estimation based on direct data domain (D3) method 被引量:2
1
作者 Chen Hui Huang Benxiong +1 位作者 Wang Yongliang Hou Yaoqiong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期512-518,共7页
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two... A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique. 展开更多
关键词 direction-of-arrival estimation space-time two-dimensional DOA direct data domain de-correlation.
在线阅读 下载PDF
Direct data domain approach to space-time adaptive processing 被引量:2
2
作者 Wen Xiaoqin Han Chongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期59-64,共6页
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi... In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment. 展开更多
关键词 space-time adaptive processing direct data domain interference suppression.
在线阅读 下载PDF
A ROBUST PHASE-ONLY DIRECT DATA DOMAIN ALGORITHM BASED ON GENERALIZED RAYLEIGH QUOTIENT OPTIMIZATION USING HYBRID GENETIC ALGORITHM 被引量:2
3
作者 Shao Wei Qian Zuping Yuan Feng 《Journal of Electronics(China)》 2007年第4期560-566,共7页
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ... A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA. 展开更多
关键词 Generalized Rayleigh quotient Hybrid genetic algorithm Phase-only optimization Direct data domain Least Squares (D^3LS) algorithm Nelder-Mead simplex algorithm
在线阅读 下载PDF
Incorporating Domain Knowledge into Data Mining Process:An Ontology Based Framework 被引量:5
4
作者 PAN Ding SHEN Jun-yi ZHOU Mu-xin 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期165-169,共5页
With the explosive growth of data available, there is an urgent need to develop continuous data mining which reduces manual interaction evidently. A novel model for data mining is proposed in evolving environment. Fir... With the explosive growth of data available, there is an urgent need to develop continuous data mining which reduces manual interaction evidently. A novel model for data mining is proposed in evolving environment. First, some valid mining task schedules are generated, and then au tonomous and local mining are executed periodically, finally, previous results are merged and refined. The framework based on the model creates a communication mechanism to in corporate domain knowledge into continuous process through ontology service. The local and merge mining are transparent to the end user and heterogeneous data ,source by ontology. Experiments suggest that the framework should be useful in guiding the continuous mining process. 展开更多
关键词 continuous data mining domain knowledge ONTOLOGY FRAMEWORK
在线阅读 下载PDF
Cost-Aware Multi-Domain Virtual Data Center Embedding 被引量:1
5
作者 Xiao Ma Zhongbao Zhang Sen Su 《China Communications》 SCIE CSCD 2018年第12期190-207,共18页
Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In dat... Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In data centers, energy issue is very important for the reality that data center energy consumption has increased by dozens of times in the last decade. In this paper, we are concerned about the cost-aware multi-domain virtual data center embedding problem. In order to solve this problem, this paper first addresses the energy consumption model. The model includes the energy consumption model of the virtual machine node and the virtual switch node, to quantify the energy consumption in the virtual data center embedding process. Based on the energy consumption model above, this paper presents a heuristic algorithm for cost-aware multi-domain virtual data center embedding. The algorithm consists of two steps: inter-domain embedding and intra-domain embedding. Inter-domain virtual data center embedding refers to dividing virtual data center requests into several slices to select the appropriate single data center. Intra-domain virtual data center refers to embedding virtual data center requests in each data center. We first propose an inter-domain virtual data center embedding algorithm based on label propagation to select the appropriate single data center. We then propose a cost-aware virtual data center embedding algorithm to perform the intra-domain data center embedding. Extensive simulation results show that our proposed algorithm in this paper can effectively reduce the energy consumption while ensuring the success ratio of embedding. 展开更多
关键词 virtual data CENTER EMBEDDING MULTI-domain cost-aware LABEL PROPAGATION
在线阅读 下载PDF
A Model-free Approach to Fault Detection of Continuous-time Systems Based on Time Domain Data
6
作者 Steven X. Ding 《International Journal of Automation and computing》 EI 2007年第2期189-194,共6页
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to d... In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals. 展开更多
关键词 Fault detection linear continuous time-invariant systems time domain data subspace methods observer-based residual generator
在线阅读 下载PDF
Domain-oriented data-driven data mining:a new understanding for data mining
7
作者 WANG Guo-yin WANG Yan 《重庆邮电大学学报(自然科学版)》 2008年第3期266-271,共6页
Recent advances in computing,communications,digital storage technologies,and high-throughput data-acquisition technologies,make it possible to gather and store incredible volumes of data.It creates unprecedented oppor... Recent advances in computing,communications,digital storage technologies,and high-throughput data-acquisition technologies,make it possible to gather and store incredible volumes of data.It creates unprecedented opportunities for large-scale knowledge discovery from database.Data mining is an emerging area of computational intelligence that offers new theories,techniques,and tools for processing large volumes of data,such as data analysis,decision making,etc.There are many researchers working on designing efficient data mining techniques,methods,and algorithms.Unfortunately,most data mining researchers pay much attention to technique problems for developing data mining models and methods,while little to basic issues of data mining.In this paper,we will propose a new understanding for data mining,that is,domain-oriented data-driven data mining(3DM)model.Some data-driven data mining algorithms developed in our Lab are also presented to show its validity. 展开更多
关键词 粗糙集 或然率 数据处理 计算方法
在线阅读 下载PDF
Domain-Oriented Data-Driven Data Mining Based on Rough Sets 被引量:1
8
作者 Guoyin Wang 《南昌工程学院学报》 CAS 2006年第2期46-46,共1页
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data... Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world. 展开更多
关键词 data mining data-DRIVEN USER-DRIVEN domain-driven KDD Machine Learning Knowledge Acquisition rough sets
在线阅读 下载PDF
Quality Assessment of Training Data with Uncertain Labels for Classification of Subjective Domains
9
作者 Ying Dai 《Journal of Computer and Communications》 2017年第7期152-168,共17页
In order to improve the performance of classifiers in subjective domains, this paper defines a metric to measure the quality of the subjectively labelled training data (QoSTD) by means of K-means clustering. Then, the... In order to improve the performance of classifiers in subjective domains, this paper defines a metric to measure the quality of the subjectively labelled training data (QoSTD) by means of K-means clustering. Then, the QoSTD is used as a weight of the predicted class scores to adjust the likelihoods of instances. Moreover, two measurements are defined to assess the performance of the classifiers trained by the subjective labelled data. The binary classifiers of Traditional Chinese Medicine (TCM) Zhengs are trained and retrained by the real-world data set, utilizing the support vector machine (SVM) and the discrimination analysis (DA) models, so as to verify the effectiveness of the proposed method. The experimental results show that the consistency of likelihoods of instances with the corresponding observations is increased notable for the classes, especially in the cases with the relatively low QoSTD training data set. The experimental results also indicate the solution how to eliminate the miss-labelled instances from the training data set to re-train the classifiers in the subjective domains. 展开更多
关键词 Quality Assessment SUBJECTIVE domain Multimodal Sensor data LABEL Noise LIKELIHOOD ADJUSTING TCM ZHENG
暂未订购
Application of Frequency-Domain Waveform Inversion Method in Marmousi Shots Data
10
作者 WANG Meng ZHANG Dong +2 位作者 YAO Di QIN Qianqing XU Lin 《Wuhan University Journal of Natural Sciences》 CAS 2012年第4期326-330,共5页
Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse ... Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse matrix factorization, combined with nine-point finite-difference for the linear system of equations. In the waveform inversion, we use preconditioned gradient method where the preconditioner is provided by the diagonal of the approximate Hessian matrix. We successfully applied waveform inversion method from low to high frequency in two sets of Marmousi data. One is the data set generated by frequencydomain finite-difference modeling, and the other is the original Marmousi shots data set. The former result is very close to the true velocity model. In the original shots data set inversion, we replace the prior source with estimated source; the result is also acceptable, and consistent with the true model. 展开更多
关键词 preconditioned gradient method frequency-domain waveform inversion Marmousi shots data
原文传递
Building a Productive Domain-Specific Cloud for Big Data Processing and Analytics Service
11
作者 Yuzhong Yan Mahsa Hanifi +1 位作者 Liqi Yi Lei Huang 《Journal of Computer and Communications》 2015年第5期107-117,共11页
Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open sour... Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open source frameworks in Cloud Computing for storing and processing big data in the scalable fashion. Spark is the latest parallel computing engine working together with Hadoop that exceeds MapReduce performance via its in-memory computing and high level programming features. In this paper, we present our design and implementation of a productive, domain-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s productivity, we created a variety of data processing templates to simplify the programming efforts. We have conducted experiments for its productivity and performance with a few basic but representative data processing algorithms in the petroleum industry. Geophysicists can use the platform to productively design and implement scalable seismic data processing algorithms without handling the details of data management and the complexity of parallelism. The Cloud platform generates a complete data processing application based on user’s kernel program and simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop. 展开更多
关键词 BUILDING a Productive domain-Specific CLOUD for BIG data PROCESSING and ANALYTICS SERVICE
在线阅读 下载PDF
频域空间信息驱动的特征聚合跨模态行人重识别方法
12
作者 金静 朱传斌 翟凤文 《计算机应用研究》 北大核心 2026年第1期298-304,共7页
跨模态行人重识别旨在匹配可见光与红外不同模态下的行人图像,该任务的核心挑战是缓解可见光与红外模态间差异并提取具有鉴别力的共享特征。然而,现有方法在最小化模态间差异和提取模态共享特征过程中,未能充分利用数据增强后的模态信... 跨模态行人重识别旨在匹配可见光与红外不同模态下的行人图像,该任务的核心挑战是缓解可见光与红外模态间差异并提取具有鉴别力的共享特征。然而,现有方法在最小化模态间差异和提取模态共享特征过程中,未能充分利用数据增强后的模态信息且忽略了不同尺度特征语义关联性,提出一种基于频域空间信息的特征聚合(FDSIFA)网络。首先,通过设计的多分支频域空间感知模块(MFSPM),对不同模态的增强图像和原始图像充分提取模态特定信息,同时在频域和空间维度上挖掘跨模态特征的一致性,有效减小了模态间的差异;其次,设计了多阶段特征聚合模块(MFAM),自适应聚合不同尺度的特征,挖掘低层次特征与高层次特征之间的语义关联,提升特征的语义表达能力和判别力。该网络在SYSU-MM01数据集的全搜索模式下,rank-1和mAP分别达到了75.09%和71.35%,优于对比方法,实验结果验证了所提方法的有效性。 展开更多
关键词 跨模态 行人重识别 数据增强 频域空间信息 特征聚合
在线阅读 下载PDF
Identification of Categorical Registration Data of Domain Names in Data Warehouse Construction Task
13
作者 Rasim Alguliev Rena Gasimova 《Intelligent Control and Automation》 2013年第2期227-234,共8页
This work is dedicated to formation of data warehouse for processing of a large volume of registration data of domain names. Data cleaning is applied in order to increase the effectiveness of decision making support. ... This work is dedicated to formation of data warehouse for processing of a large volume of registration data of domain names. Data cleaning is applied in order to increase the effectiveness of decision making support. Data cleaning is ap- plied in warehouses for detection and deletion of errors, discrepancy in data in order to improve their quality. For this purpose, fuzzy record comparison algorithms are for clearing of registration data of domain names reviewed in this work. Also, identification method of domain names registration data for data warehouse formation is proposed. Deci- sion making algorithms for identification of registration data are implemented in DRRacket and Python. 展开更多
关键词 domain domain Name System Registrar Registrant Category data data WAREHOUSE data CLEARING Fuzzy Search Algorithms Damerau-Levenstein Distance Decision Tree
在线阅读 下载PDF
基于长尾词分布的藏汉机器翻译数据增强方法
14
作者 格桑加措 尼玛扎西 +5 位作者 群诺 嘎玛扎西 道吉扎西 罗桑益西 拉毛吉 钱木吉 《计算机科学》 北大核心 2026年第1期224-230,共7页
现有藏汉机器翻译语料中存在领域数据分布不平衡的问题,导致训练出来的模型对各个领域数据的翻译能力表现不均衡。反向翻译作为一种常见的数据增强方法,通过提供更多样化的伪数据来提高模型的性能。然而,传统的反向翻译方法难以充分考... 现有藏汉机器翻译语料中存在领域数据分布不平衡的问题,导致训练出来的模型对各个领域数据的翻译能力表现不均衡。反向翻译作为一种常见的数据增强方法,通过提供更多样化的伪数据来提高模型的性能。然而,传统的反向翻译方法难以充分考虑数据的领域分布不平衡问题,导致模型在整体性能提升过程中难以提升资源稀缺领域的翻译性能。对此,通过深入分析语料中的长尾词的分布,有针对性地利用现有藏汉双语语料的长尾词来选取单语数据,通过反向翻译构造伪数据进行数据增强操作。这一策略旨在提升藏汉机器翻译模型整体性能的同时,改善数据匮乏领域的翻译性能。实验结果表明,通过充分考虑领域数据不平衡情况,结合长尾词数据增强,能够有效提升机器翻译模型在稀缺领域的翻译性能,为解决领域数据不平衡问题提供了一种有针对性的策略。 展开更多
关键词 长尾词 数据增强 藏汉机器翻译 领域数据不平衡
在线阅读 下载PDF
基于DDD技术的岩土工程数据采集系统搭建及验证效果
15
作者 宋卫超 《粘接》 2026年第2期549-551,555,共4页
针对传统岩土工程数据采集系统存在的数据采集精度差等问题,提出一种(DDD)领域驱动设计(DDD)技术与深度学习技术融合的岩土工程数据采集系统。首先搭建基于领域驱动设计的岩土工程数据采集系统四层架构,然后分析改系统构建的关键核心,... 针对传统岩土工程数据采集系统存在的数据采集精度差等问题,提出一种(DDD)领域驱动设计(DDD)技术与深度学习技术融合的岩土工程数据采集系统。首先搭建基于领域驱动设计的岩土工程数据采集系统四层架构,然后分析改系统构建的关键核心,最后将系统用于实际岩土工程项目。结果表明,系统数据采集层使用的高精度传感器与摄像机对现场数据采集准确率99.68%,数据处理层的目标检测算法检测平均精度高达98.4%,行为识别准确率达到96.7%,应用服务层的预警准确率98.79%;从数据采集层到用户界面层的数据可视化平均延迟时间0.48 s。由此得出,该方法提升了岩土工程的数据采集管理效率,具有一定的实用价值。 展开更多
关键词 数据采集 岩土工程 领域驱动设计 深度学习技术 目标检测模型
在线阅读 下载PDF
Using Data Mining with Time Series Data in Short-Term Stocks Prediction: A Literature Review 被引量:3
16
作者 José Manuel Azevedo Rui Almeida Pedro Almeida 《International Journal of Intelligence Science》 2012年第4期176-180,共5页
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series da... Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced. 展开更多
关键词 data MINING Time Series FUNDAMENTAL data data Frequency Application domain SHORT-TERM Stocks PREDICTION
暂未订购
数据要素场技术体系及工程实践 被引量:2
17
作者 吴曼青 洪日昌 +7 位作者 王佐成 林传文 马韵洁 郭嘉丰 吴乐 范举 张兰 王翔 《中国工程科学》 北大核心 2025年第1期51-62,共12页
将数据作为新的生产要素,是我国在精准把握和研判全球科技发展规律下提出的重大理论创新。以数据要素市场化配置改革为主线,培育全国一体化数据市场,促进数据要素开发利用,是我国数据要素创新发展的总体纲领。本文围绕数据要素市场化配... 将数据作为新的生产要素,是我国在精准把握和研判全球科技发展规律下提出的重大理论创新。以数据要素市场化配置改革为主线,培育全国一体化数据市场,促进数据要素开发利用,是我国数据要素创新发展的总体纲领。本文围绕数据要素市场化配置改革,聚焦推动数据要素流通和数据要素价值释放,提出探索数据要素价值时空分布的内在机理即数据场基础理论,探讨了在深入研究数据场基础理论的同时,构建涵盖数据要素流通全生命周期的数据要素场技术体系,具体包括跨域数据管理技术、数据件封装技术、低熵化流通技术、穿透式安全技术和聚变式处理技术。同时,分析了数据要素场在卫生健康场景中的工程实践案例,提出了数据要素场的创新应用场景和工程实践范式,展望了数据场基础理论和数据要素场关键技术、工程实践、生态构建方面的前景,旨在为数据场的发展提供理论基础和实践指导,推动数字经济和社会治理的现代化。 展开更多
关键词 数据场 跨域数据管理 数据件封装 低熵化流通 穿透式安全 聚变式处理技术
在线阅读 下载PDF
Virtual 5G Network Embedding in a Heterogeneous and Multi-Domain Network Infrastructure 被引量:6
18
作者 Cunqian Yu Weigang Hou +2 位作者 Yingying Guan Yue Zong Pengxing Guo 《China Communications》 SCIE CSCD 2016年第10期29-43,共15页
The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex vi... The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark. 展开更多
关键词 5G virtual network embedding heterogeneous and multi-domain infrastructure wireless channel capacity data center
在线阅读 下载PDF
基于5G通信的车辆运行数据实时传输系统
19
作者 韩勇 薛锦东 +1 位作者 庞亚军 石源 《电子设计工程》 2026年第1期181-186,191,共7页
车辆运行数据实时传输中存在时延,为降低时延,在保证数据传输质量的前提下提高传输稳定性,设计基于5G通信的车辆运行数据实时传输系统。通过车载终端和激光雷达等监测设备实时监测和收集车辆运行状态信息及周边环境信息,利用5G通信网络... 车辆运行数据实时传输中存在时延,为降低时延,在保证数据传输质量的前提下提高传输稳定性,设计基于5G通信的车辆运行数据实时传输系统。通过车载终端和激光雷达等监测设备实时监测和收集车辆运行状态信息及周边环境信息,利用5G通信网络层的5G通信模块将经过边缘计算预处理的信息发送给5G基站。基站以探测参考信号为依据,确定各收发节点的时延和多普勒频偏预估值,经校正处理和OFDM信号解调后,采用最小线性均方误差方法和时域维纳插值方法实现时、频域信道估计,再将OFDM符号检测后的车辆运行数据通过核心网安全传输至数据中心,完成异常数据检测和预警分析等处理。实验结果表明,与对比方法相比,该系统的BER指标降低至10-5量级,车辆运行数据流传输稳定性高。 展开更多
关键词 5G通信 车辆运行数据 5G基站 信道估计 多普勒频偏 时域维纳插值
在线阅读 下载PDF
Incremental Learning Based on Data Translation and Knowledge Distillation
20
作者 Tan Cheng Jielong Wang 《International Journal of Intelligence Science》 2023年第2期33-47,共15页
Recently, deep convolutional neural networks (DCNNs) have achieved remarkable results in image classification tasks. Despite convolutional networks’ great successes, their training process relies on a large amount of... Recently, deep convolutional neural networks (DCNNs) have achieved remarkable results in image classification tasks. Despite convolutional networks’ great successes, their training process relies on a large amount of data prepared in advance, which is often challenging in real-world applications, such as streaming data and concept drift. For this reason, incremental learning (continual learning) has attracted increasing attention from scholars. However, incremental learning is associated with the challenge of catastrophic forgetting: the performance on previous tasks drastically degrades after learning a new task. In this paper, we propose a new strategy to alleviate catastrophic forgetting when neural networks are trained in continual domains. Specifically, two components are applied: data translation based on transfer learning and knowledge distillation. The former translates a portion of new data to reconstruct the partial data distribution of the old domain. The latter uses an old model as a teacher to guide a new model. The experimental results on three datasets have shown that our work can effectively alleviate catastrophic forgetting by a combination of the two methods aforementioned. 展开更多
关键词 Incremental domain Learning data Translation Knowledge Distillation Cat-astrophic Forgetting
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部