We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting I...We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks.展开更多
The content-centric networking(CCN)architecture allows access to the content through name,instead of the physical location where the content is stored,which makes it a more robust and flexible content-based architectu...The content-centric networking(CCN)architecture allows access to the content through name,instead of the physical location where the content is stored,which makes it a more robust and flexible content-based architecture.Nevertheless,in CCN,the broadcast nature of vehicles on the Internet of Vehicles(IoV)results in latency and network congestion.The IoVbased content distribution is an emerging concept in which all the vehicles are connected via the internet.Due to the high mobility of vehicles,however,IoV applications have different network requirements that differ from those of many other networks,posing new challenges.Considering this,a novel strategy mediator framework is presented in this paper for managing the network resources efficiently.Software-defined network(SDN)controller is deployed for improving the routing flexibility and facilitating in the interinteroperability of heterogeneous devices within the network.Due to the limited memory of edge devices,the delectable bloom filters are used for caching and storage.Finally,the proposed scheme is compared with the existing variants for validating its effectiveness.展开更多
Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the ...Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the Internet of Medical Things(IoMT),equipped with cloud computing,has come out to be a beneficial paradigm in the healthcare field.However,the openness of networks and systems leads to security threats and illegal access.Therefore,reliable,fast,and robust security methods need to be developed to ensure the safe exchange of healthcare data generated from various image sensing and other IoMT-driven devices in the IoMT network.This paper presents an image protection scheme for healthcare applications to protect patients’medical image data exchanged in IoMT networks.The proposed security scheme depends on an enhanced 2D discrete chaotic map and allows dynamic substitution based on an optimized highly-nonlinear S-box and diffusion to gain an excellent security performance.The optimized S-box has an excellent nonlinearity score of 112.The new image protection scheme is efficient enough to exhibit correlation values less than 0.0022,entropy values higher than 7.999,and NPCR values around 99.6%.To reveal the efficacy of the scheme,several comparison studies are presented.These comparison studies reveal that the novel protection scheme is robust,efficient,and capable of securing healthcare imagery in IoMT systems.展开更多
On-path caching is the prominent module in Content-Centric Networking(CCN),equipped with the capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.The main focus...On-path caching is the prominent module in Content-Centric Networking(CCN),equipped with the capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.The main focus of the CCN caching module is data dissemination within the network.Most of the existing strategies of in-network caching in CCN store the content at the maximumnumber of routers along the downloading path.Consequently,content redundancy in the network increases significantly,whereas the cache hit ratio and network performance decrease due to the unnecessary utilization of limited cache storage.Moreover,content redundancy adversely affects the cache resources,hit ratio,latency,bandwidth utilization,and server load.We proposed an in-network caching placement strategy named Coupling Parameters to Optimize Content Placement(COCP)to address the content redundancy and associated problems.The novelty of the technique lies in its capability tominimize content redundancy by creating a balanced cache space along the routing path by considering request rate,distance,and available cache space.The proposed approach minimizes the content redundancy and content dissemination within the network by using appropriate locations while increasing the cache hit ratio and network performance.The COCP is implemented in the simulator(Icarus)to evaluate its performance in terms of the cache hit ratio,path stretch,latency,and link load.Extensive experiments have been conducted to evaluate the proposed COCP strategy.The proposed COCP technique has been compared with the existing state-of-theart techniques,namely,Leave Copy Everywhere(LCE),Leave Copy Down(LCD),ProbCache,Cache Less forMore(CL4M),and opt-Cache.The results obtained with different cache sizes and popularities show that our proposed caching strategy can achieve up to 91.46%more cache hits,19.71%reduced latency,35.43%improved path stretch and 38.14%decreased link load.These results confirm that the proposed COCP strategy has the potential capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2023YFB3106900the National Natural Science Foundation of China under Grant 62171113the China Scholarship Council under Grant 202406080100.
文摘We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks.
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20204010600090).
文摘The content-centric networking(CCN)architecture allows access to the content through name,instead of the physical location where the content is stored,which makes it a more robust and flexible content-based architecture.Nevertheless,in CCN,the broadcast nature of vehicles on the Internet of Vehicles(IoV)results in latency and network congestion.The IoVbased content distribution is an emerging concept in which all the vehicles are connected via the internet.Due to the high mobility of vehicles,however,IoV applications have different network requirements that differ from those of many other networks,posing new challenges.Considering this,a novel strategy mediator framework is presented in this paper for managing the network resources efficiently.Software-defined network(SDN)controller is deployed for improving the routing flexibility and facilitating in the interinteroperability of heterogeneous devices within the network.Due to the limited memory of edge devices,the delectable bloom filters are used for caching and storage.Finally,the proposed scheme is compared with the existing variants for validating its effectiveness.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Funding Program,Grant No.(FRP-1443-11).
文摘Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the Internet of Medical Things(IoMT),equipped with cloud computing,has come out to be a beneficial paradigm in the healthcare field.However,the openness of networks and systems leads to security threats and illegal access.Therefore,reliable,fast,and robust security methods need to be developed to ensure the safe exchange of healthcare data generated from various image sensing and other IoMT-driven devices in the IoMT network.This paper presents an image protection scheme for healthcare applications to protect patients’medical image data exchanged in IoMT networks.The proposed security scheme depends on an enhanced 2D discrete chaotic map and allows dynamic substitution based on an optimized highly-nonlinear S-box and diffusion to gain an excellent security performance.The optimized S-box has an excellent nonlinearity score of 112.The new image protection scheme is efficient enough to exhibit correlation values less than 0.0022,entropy values higher than 7.999,and NPCR values around 99.6%.To reveal the efficacy of the scheme,several comparison studies are presented.These comparison studies reveal that the novel protection scheme is robust,efficient,and capable of securing healthcare imagery in IoMT systems.
基金This work was supported by Taif University Researchers Supporting Project Number(TURSP-2020/292),Taif University,Taif,Saudi Arabia。
文摘On-path caching is the prominent module in Content-Centric Networking(CCN),equipped with the capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.The main focus of the CCN caching module is data dissemination within the network.Most of the existing strategies of in-network caching in CCN store the content at the maximumnumber of routers along the downloading path.Consequently,content redundancy in the network increases significantly,whereas the cache hit ratio and network performance decrease due to the unnecessary utilization of limited cache storage.Moreover,content redundancy adversely affects the cache resources,hit ratio,latency,bandwidth utilization,and server load.We proposed an in-network caching placement strategy named Coupling Parameters to Optimize Content Placement(COCP)to address the content redundancy and associated problems.The novelty of the technique lies in its capability tominimize content redundancy by creating a balanced cache space along the routing path by considering request rate,distance,and available cache space.The proposed approach minimizes the content redundancy and content dissemination within the network by using appropriate locations while increasing the cache hit ratio and network performance.The COCP is implemented in the simulator(Icarus)to evaluate its performance in terms of the cache hit ratio,path stretch,latency,and link load.Extensive experiments have been conducted to evaluate the proposed COCP strategy.The proposed COCP technique has been compared with the existing state-of-theart techniques,namely,Leave Copy Everywhere(LCE),Leave Copy Down(LCD),ProbCache,Cache Less forMore(CL4M),and opt-Cache.The results obtained with different cache sizes and popularities show that our proposed caching strategy can achieve up to 91.46%more cache hits,19.71%reduced latency,35.43%improved path stretch and 38.14%decreased link load.These results confirm that the proposed COCP strategy has the potential capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.